Μεταπτυχιακό Πρόγραμμα «Γεωπληροφορικής»
Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, Πολυτεχνική Σχολή
Αριστοτέλειο Πανεπιστήμio Θεσσαλονίκης

Μικρού Θεόδωρος
Διπλωματούχος Αγρονόμος και Τοπογράφος Μηχανικός, ΑΠΘ

"Ανάπτυξη σύγχρονου λογισμικού για τη συνόρθωση και στατιστική επεξεργασία κατακόρυφων δικτύων"
Abstract
«Development of modern software package for the adjustment and statistical analysis of vertical networks»

This MSc. Diploma thesis is under the title “Development of a modern software package for the adjustment and statistical analysis of vertical networks” was elaborated by Mikrou Theodoros in partial fulfillment for the degree of Master Diploma Engineering at the Department of Geodesy and Surveying Faculty of Rural and Surveying Engineering (RSE), Faculty of Engineering, Aristotle University of Thessaloniki (AUTH).

The program which was used to develop the software was Visual Studio Express 2012 and the programming language was Visual Basic.NET v.11. Also for the implementation of the software, Xml was used to store the Options of the program and to store the constructed new projections and ellipsoids by the user. Html was used as well for a better presentation of the results form from the Adjustment and also SqLite for storing each project’s data.

The first chapter is dedicated to the reasons and goals that are required of such a diplomatic thesis.

In the second chapter we will refer to the theory for the Adjustment and statistical analysis of vertical networks, which may contain observations from spirit leveling, trigonometric leveling and a new category of observations the GNSS leveling observations. We will see the adjustment model that is used, the statistical tests that are used and the equations of each type of observation.

The third chapter will refer to all the possible computations and options that software Netist provides to the user.

The fourth chapter will provide some general comments on the use of the software and an extended example of a leveling network containing multiple observation types.

The fifth chapter presents the conclusions of this work and some useful extensions of the software in the future.

Then it follows the Annex A which refers to the codes of data import in the software using Text File. After it there is the Annex B which refers to the geoid models that are used in the software and also shows the format in which the geoid model is imported.
Περίληψη

Η παρούσα μεταπτυχιακή διατριβή με τίτλο «Ανάπτυξη σύγχρονου λογισμικού για τη συνόρθωση και στατιστική επεξεργασία κατακόρυφων δικτύων» εκπονήθηκε από τον μεταπτυχιακό φοιτητή Μικρού Θεόδωρο στο πλαίσιο των υποχρεώσεων για την ολοκλήρωση των σπουδών στο μεταπτυχιακό πρόγραμμα σπουδών του Τμήματος Αγρονόμων και Τοπογράφων Μηχανικών (ΤΑΤΜ) της Πολυτεχνικής Σχολής του ΑΠΘ, «Γεωπληροφορικής» στην κατεύθυνση Τοπογραφικών Εφαρμογών Υψηλής Ακρίβειας. Στόχος της παρούσης εργασίας είναι η κατασκευή ενός σύγχρονου λογισμικού για τη συνόρθωση και στατιστική επεξεργασία κατακόρυφων δικτύων.

Το πρόγραμμα που χρησιμοποιήθηκε για την ανάπτυξη του λογισμικού ήταν το Visual Studio Express 2012 και η γλώσσα προγραμματισμού ήταν η Visual Basic.NET v.11. Επίσης για την υλοποίηση του χρησιμοποιήθηκε Xml για την αποθήκευση των ρυθμίσεων του προγράμματος καθώς και για την κατασκευή καινούριων προβολών και ελλειψοειδών από τον χρήστη. Χρησιμοποιήθηκε ακόμα Html για την καλύτερη παρουσίαση των αποτελεσμάτων της συνόρθωσης και SqLite για την αποθήκευση των δεδομένων του κάθε project.

Στο πρώτο κεφάλαιο θα γίνει μία αναφορά στους λόγους και στους στόχους που επιβάλλουν την εκπόνηση μιας τέτοιας διπλωματικής διατριβής.

Στο δεύτερο κεφάλαιο θα αναφερθούμε στη θεωρία για τη συνόρθωση και στατιστική αξιολόγηση των κατακόρυφων δικτύων, τα οποία μπορεί να περιέχουν παρατηρήσεις από γεωμετρική χωροστάθμηση, τριγωνομετρική χωροστάθμηση καθώς και μια καινούρια κατηγορία παρατηρήσεων GNSS χωροστάθμησης. Θα γίνει αναφορά για το μοντέλο, τη μέθοδο συνόρθωσης, τους στατιστικούς ελέγχους που χρησιμοποιήθηκαν στο πρόγραμμα καθώς και για τις εξισώσεις των παρατηρήσεων.

Στο τρίτο κεφάλαιο θα γίνει αναφορά σε όλες τις επιλογές που μας προσφέρει το λογισμικό Netist για τα κατακόρυφα δίκτυα.

Στο τέταρτο κεφάλαιο θα δοθούν κάποιες γενικές παρατηρήσεις για τη χρήση του λογισμικού καθώς και ένα εκτεταμένο παράδειγμα για μικτό χωροσταθμικό δίκτυο.

Στο πέμπτο κεφάλαιο παρατίθενται τα συμπεράσματα που προκύπτουν από την παρούσα εργασία καθώς και κάποιες χρήσιμες επεκτάσεις του προγράμματος στο μέλλον.

Έπειτα ακολουθεί το Παράρτημα Α στο οποίο γίνεται αναφορά στους κωδικούς εισαγωγής δεδομένων στο λογισμικό μέσο αρχείου Text. Μετά το Παράρτημα B το οποίο αναφέρεται στα μοντέλα γεωειδούς που χρησιμοποιήθηκαν στο πρόγραμμα καθώς και στην μορφή με την οποία γίνεται η εισαγωγή μοντέλου γεωειδούς.
Περιεχόμενα

Abstract ... i
Περίληψη... ii

Κεφάλαιο 1ο: Εισαγωγή ... 1

Κεφάλαιο 2ο: Θεωρία .. 3
2.1 Γενικές σχέσεις συνόρθωσης με τη μέθοδο εξισώσεων παρατηρήσεων.......................... 3
2.2 Δεσμεύσεις... 6
2.3 Ειδικότερες σχέσεις και πίνακες για τα κατακόρυφα δίκτυα χωρίς τη συμμετοχή παρατηρήσεων GNSS χωροστάθμησης ... 9
2.4 Στατιστικοί έλεγχοι και εκτίμηση μεταβλητοτήτων.. 12
2.4.1 Ολικός έλεγχος αξιοπιστίας δικτύου .. 12
2.4.2 Σάρωση δεδομένων.. 12
2.4.3 Αριθμοί πλεονασμού(Redundancy) και εκτίμηση μεταβλητοτήτων......................... 13
2.5 Ομάδες παρατηρήσεων... 16
2.5.1 Γεωμετρική χωροστάθμηση ... 16
2.5.2 Τριγωνομετρική χωροστάθμηση ... 18
2.5.3 GNSS χωροστάθμηση ... 19
2.6 Διαφοροποίηση μοντέλου και λύσης με συμμετοχή παρατηρήσεων GNSS χωροστάθμησης.. 21

Κεφάλαιο 3ο: Επιλογές προγράμματος .. 24
3.1 Menu → Project .. 24
3.1.1 New Project ... 24
3.1.2 Load.. 24
3.1.3 Save as... 25
3.1.4 Save .. 25
3.1.5 Recent Files.. 25
3.1.6 Close Project ... 25
3.1.7 Exit Netist .. 25
3.2 Menu → Data ... 25
3.2.1 Edit Data ... 25
3.2.2 Input File... 25
3.2.3 Create Excel Template ... 28
3.3 Menu → Options .. 28
3.3.1 Project Settings .. 29
3.3.2 Map Projections Library ... 33
3.3.3 Reference Ellipsoids Library .. 34
3.4 Menu → Compute ... 35
3.4.1 Network Adjustment .. 35
3.4.2 Determination of approximate coordinates.. 38
Κεφάλαιο 2ο: Θεωρία ... 3
2.1. Ερώτηση στην περίπτωση δικτύου αμιγώς γεωμετρικής χωροστάθμησης με αποστάσεις 17
2.2. Αποτελέσματα στατιστικών ελέγχων με επιλογή «Νο» στην εικόνα 2.1... 17
2.3. (Αριστερά) Αποτελέσματα στατιστικών ελέγχων με επιλογή «Yes»... 17

Κεφάλαιο 3ο: Επιλογές προγράμματος ... 24
3.1. (Αριστερά) Φόρμα δημιουργίας καινούριου project, (Δεξιά) Επιλογές δικτύου .. 24
3.2. Φόρμα τροποποίησης δεδομένων του project... 25
3.3. Εικόνα επιλογής σταθμών... 26
3.4. (Αριστερά) Επιλογή απενεργοποίησης, (Δεξιά) Αποτέλεσμα της επιλογής .. 26
3.5. (Αριστερά) Επιλογή ενεργοποίησης, (Δεξιά) Αποτέλεσμα της επιλογής ... 27
3.6. (Αριστερά) Επιλογή διαγραφής, (Δεξιά) Αποτέλεσμα της επιλογής ... 27
3.7. (Πάνω-Αριστερά) Φόρμα επιτυχώς προβολής δεδομένων χωρίς σφάλματα, (Πάνω-Δεξιά) Φόρμα επιτυχώς προβολής δεδομένων με σφάλματα, (Κάτω-Αριστερά) Αποτέλεσμα δικτύου από Excel, (Κάτω-Δεξιά) Αποτέλεσμα σφαλμάτων από Text... 28
3.8. Φόρμα Settings, καρτέλα General... 29
3.9. (Αριστερά) Προεπιλογές ελλειψοειδών, (Δεξιά) Προπροβολές της συνόρθωσης.. 29
3.10. Επιλογές σταθμών γεωμετρικής χωροστάθμησης ... 30
3.11. Ρύθμιση ακρίβειας υψομέτρων γεωμετρικής χωροστάθμησης ... 30
3.12. Φόρμα Settings, καρτέλα Data Weighting ... 30
3.13. Φόρμα Settings, καρτέλα Adjustment... 31
3.14. Φόρμα Settings, καρτέλα Other Parameters ... 31
3.15. Επιλογές παραμετρικού μοντέλου για μικτό δικτύο με GNSS χωροστάθμηση 32
3.16. (Αριστερά) Φόρμα με την προβολής, (Δεξιά) Επιλογές δεξιά κλικ σε κάποια προβολή........................ 33
3.17. (Αριστερά) Επιλογή τύπου προβολής, (Δεξιά) Τροποποίηση παραμέτρων καινούριας προβολής........ 33
3.18. Φόρμα με τα ελλειψοειδή .. 34
3.19. Φόρμα τροποποίησης παραμέτρων καινούριας ελλειψοειδών .. 34
3.20. Επιλογές μέσω της επιλογής Compute... 35
3.21. (Αριστερά) Φόρμα επιλογής σταθμών με δεσμεύσεις με βάση γνωστές συντεταγμένες, (Δεξιά) Επιλογές Fixed, Weighted ... 35
3.22. (Αριστερά) Φόρμα εσωτερικών (πλήρης) δεσμεύσεων, (Δεξιά) πλεονάζους (πλήρης) εσωτερικές δεσμεύσεις ... 36
3.23. (Αριστερά) Φόρμα εσωτερικών (μερικών) δεσμεύσεων, (Δεξιά) πλεονάζους (μερικές) εσωτερικές δεσμεύσεις ... 36
3.24. Εξαγωγή κανονικών εξισώσεων σε αρχείο Text... 37
3.25. Εξαγωγή κανονικών εξισώσεων σε αρχείο Excel, (Αριστερά) Διάνυσμα γ, (Δεξιά) Κάτω τριγωνικός πίνακας N ... 37
3.26. Φόρμα αποτελεσμάτων υπολογισμού προσεγγιστικών υψομέτρων ... 38
3.27. Φόρμα αποτελεσμάτων εκτίμησης μεταβλητήτων ... 39
3.28. Φόρμα αποτελεσμάτων παρεμβολής υψομέτρων γεωμετρικής χωροστάθμησης .. 39
3.29. Μητάρα εργαλείων της φόρμας αποτελεσμάτων της συνόρθωσης ... 40
3.30. Εξαγωγή του κάτω τριγωνικού πίνακα Cx σε αρχείο Text... 40
Κεφάλαιο 4: Εικόνες Παραδείγματος

4.1. Ρύθμιση Settings πριν την εισαγωγή δεδομένων .. 53
4.2. Αρχείο εισαγωγής δεδομένων *.txt .. 53
4.3. Αρχείο εισαγωγής δεδομένων *.xls, *.xlsx ... 54
4.4. (Αριστερά) Επιλογή παραμετρικού μοντέλου, (Δεξιά) Επιλογές a-priori μεταβλητότητας για κάθε ομάδα παρατήρησης ... 55
4.5. Επιλογή υπολογισμού προσεγγιστικών συντεταγμένων ... 55
4.6. Φόρμα αποτελεσμάτων υπολογισμού προσεγγιστικών συντεταγμένων 55
4.7. Επιλογή συνόρθωσης εσωτερικών δεσμεύσεων (πλήρης) : Αριστερά μέσο κεντρικού μενού, Δεξιά μέσο μπάρας εργαλείων προγράμματος ... 56
4.8. (Αριστερά) Ελάχιστες εσωτερικές πλήρης, (Δεξιά) Πλεονάζουσες εσωτερικές πλήρης ... 56
4.9. (Αριστερά) Αποτελέσματα συνόρθωσης με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Αποτελέσματα συνόρθωσης με πλεονάζουσες εσωτερικές πλήρης ... 57
<table>
<thead>
<tr>
<th>Αριθμός</th>
<th>Σελίδα</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.10</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>58</td>
</tr>
<tr>
<td>4.12</td>
<td>58</td>
</tr>
<tr>
<td>4.13</td>
<td>58</td>
</tr>
<tr>
<td>4.14</td>
<td>59</td>
</tr>
<tr>
<td>4.15</td>
<td>60</td>
</tr>
<tr>
<td>4.16</td>
<td>60</td>
</tr>
<tr>
<td>4.17</td>
<td>60</td>
</tr>
<tr>
<td>4.18</td>
<td>61</td>
</tr>
<tr>
<td>4.19</td>
<td>61</td>
</tr>
<tr>
<td>4.20</td>
<td>61</td>
</tr>
<tr>
<td>4.21</td>
<td>61</td>
</tr>
<tr>
<td>4.22</td>
<td>62</td>
</tr>
<tr>
<td>4.23</td>
<td>63</td>
</tr>
<tr>
<td>4.24</td>
<td>63</td>
</tr>
<tr>
<td>4.25</td>
<td>63</td>
</tr>
<tr>
<td>4.26</td>
<td>64</td>
</tr>
<tr>
<td>4.27</td>
<td>65</td>
</tr>
<tr>
<td>4.28</td>
<td>65</td>
</tr>
<tr>
<td>4.29</td>
<td>65</td>
</tr>
<tr>
<td>4.30</td>
<td>66</td>
</tr>
<tr>
<td>4.31</td>
<td>66</td>
</tr>
<tr>
<td>4.32</td>
<td>66</td>
</tr>
<tr>
<td>4.33</td>
<td>67</td>
</tr>
<tr>
<td>4.34</td>
<td>67</td>
</tr>
</tbody>
</table>

(Αριστερά) Καρτέλα Adjusted Stations με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Καρτέλα Adjusted Stations με πλεονάζουσες εσωτερικές πλήρης...

(Αριστερά) Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling με ελάχιστες εσωτερικές πλήρης δεσμεύσεις...

(Αριστερά) Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling με πλεονάζουσες εσωτερικές πλήρης δεσμεύσεις...

(Αριστερά) Επιλογή υπολογισμού εκτίμησης μεταβλητών, (Δεξιά) Αποτελέσματα του υπολογισμού...

(Αριστερά) Αποτελέσματα συνόρθωσης με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Αποτελέσματα συνόρθωσης με πλεονάζουσες εσωτερικές πλήρης (VcE)...

(Αριστερά) Καρτέλα Adjusted Stations με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Καρτέλα Adjusted Stations με πλεονάζουσες εσωτερικές πλήρης (VcE)...

(Αριστερά) Επιλογή συνόρθωσης με βάση γνωστές συντεταγμένες: Αριστερά μέσο κεντρικού μενού, Δεξιά μέσο μπάρας εργαλείων προγράμματος...

(Αριστερά) Πλεονάζουσες με απόλυτα γνωστά υψόμετρα του Repere και το υψόμετρο του σταθμού 16, (Δεξιά) Αποτελέσματα: VcE...

(Αριστερά) Αποτελέσματα: α)πλεονάζουσες με απόλυτα γνωστά υψόμετρα του Repere και το υψόμετρο του σταθμού 16, (Δεξιά) Αποτελέσματα: β)πλεονάζουσες με γνωστά τα ίδια υψόμετρα με τυπική απόκλιση ενός εκατοστού για το Repere και πέντε εκατοστών για το σταθμό 16:...

(Αριστερά) Αποτελέσματα: α)πλεονάζουσες με απόλυτα γνωστά υψόμετρα του Repere και το υψόμετρο του σταθμού 16, (Δεξιά) Αποτελέσματα: β)πλεονάζουσες με γνωστά τα ίδια υψόμετρα με τυπική απόκλιση ενός εκατοστού για το Repere και πέντε εκατοστών για το σταθμό 16...

(Αριστερά) Καρτέλα Adjusted Stations α), (Δεξιά) Καρτέλα Adjusted Stations β)

(Αριστερά) Καρτέλα Adjusted Stations, υποκαρτέλα Spirit Levelling περίπτωση α)

(Αριστερά) Καρτέλα Adjusted Stations, υποκαρτέλα Spirit Levelling περίπτωση β)

(Αριστερά) Επιλογή υπολογισμού εκτίμησης μεταβλητών, (Δεξιά) Αποτελέσματα του υπολογισμού...

(Αριστερά) Αποτελέσματα συνόρθωσης περίπτωση α), (Δεξιά) Αποτελέσματα συνόρθωσης περίπτωση β) (VcE)...

(Αριστερά) Καρτέλα Adjusted Stations περίπτωση α), (Δεξιά) Καρτέλα Adjusted Stations περίπτωση β) (VcE προτού γίνει συνόρθωση)...

(Αριστερά) Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling περίπτωση α) (VcE)...

(Αριστερά) Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling περίπτωση β) (VcE)...

(Αριστερά) Επιλογή μοντέλου γεωειδικών μέσο των Settings, EGM2008 EGS687 (HEPOS)...

(Αριστερά) Επιλογή υπολογισμού υψομέτρων γεωειδικών και αποτελέσματα του υπολογισμού...

(Αριστερά) Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS χωρίς παραμετρικό μοντέλο...

(Αριστερά) Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS με παραμετρικό μοντέλο: μόνο κλίμακα...

(Αριστερά) Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS με παραμετρικό μοντέλο: δύο κλίσεις...

vii
4.35. Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS με παραμετρικό μοντέλο: δύο κλίσεις και μία κλίμακα. ... 67
4.36. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual χωρίς παραμετρικό μοντέλο ... 68
4.37. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual με παραμετρικό μοντέλο: μόνο κλίμακα ... 68
4.38. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual με παραμετρικό μοντέλο: δύο κλίσεις ... 68
4.39. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual με παραμετρικό μοντέλο: δύο κλίσεις και μία κλίμακα ... 69
4.40. Καρτέλα Adjusted Observations, υποκαρτέλα GNSS Levelling (No model) ... 69
4.41. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling (No model) ... 69
4.42. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling (No model) ... 69
4.43. Καρτέλα Adjusted Observations, υποκαρτέλα GNSS Levelling (Scale Only) ... 70
4.44. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling(Scale Only) ... 70
4.45. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling (Scale Only) ... 70
ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 1°: Εισαγωγή

Το συγκεκριμένο τεύχος συντάχθηκε στα πλαίσια της διπλωματικής εργασίας του μεταπτυχιακού προγράμματος «Γεωπληροφορική», Τοπογραφικές εφαρμογές υψηλής ακρίβειας από τον μεταπτυχιακό φοιτητή Μικρό Θεόδωρο υπό την επιτήρηση του Καθηγητή κ. Χριστόφορου Κωτσάκη. Την εξεταστική επιτροπή της συγκεκριμένης μεταπτυχιακής διατριβής αποτελούσαν ο Αναπληρωτής Καθηγητής κ. Χρήστος Πικριδάς και ο Καθηγητής κ. Δημήτριος Ρωσσικόπουλος.

Η συγκεκριμένη διατριβή αποτελούσε μία ανάγκη δημιουργίας ενός πιο σύγχρονου λογισμικού για τη συνόρθωση και στατιστική ανάλυση κατακόρυφων δικτύων σε επίπεδο πανεπιστημιακού λογισμικού καθώς τα περισσότερα προγράμματα είναι αρκετά παλιά ή δεν έχουν αρκετές δυνατότητες υπολογισμών. Μεγάλη βαρύτητα δόθηκε στο κομμάτι της εμφάνισης του προγράμματος και στον τρόπο εισαγωγής δεδομένων σε αυτό. Μεγαλύτερη στα μοντέλα τα οποία χρησιμοποιούνται για την υλοποίηση των εκάστοτε υπολογισμών και σε καινούριες δυνατότητες που θα προσφέρει το πρόγραμμα στο χρήστη.

Ως στόχο είχε τη δημιουργία ενός εύχρηστου προγράμματος το οποίο θα δουλεύει σωστά με βάση το εκάστοτε μοντέλο συνόρθωσης και με πολλές υπολογιστικές δυνατότητες καθώς και αρκετές καινούριες που θα αφορούν την συνόρθωση και την καλύτερη στατιστική ανάλυση των κατακόρυφων δικτύων.

Στα επόμενα κεφάλαια θα δούμε τις επιλογές που μας δίνει το λογισμικό καθώς και την θεωρία που χρησιμοποιήθηκε για την υλοποίησή του. Θα γίνει αναφορά στα κατακόρυφα δίκτυα ενώ το κομμάτι των οριζόντιων και τρισδιάστατων δικτύων έχει αναπτυχθεί από τον συνάδελφο και φίλο Γεώργιο Ουζουνούδη.

Στο δεύτερο κεφάλαιο πιο συγκεκριμένα θα αναφερθούμε στη θεωρία για την συνόρθωση και στατιστική αξιολόγηση των κατακόρυφων δικτύων. Θα γίνει αναφορά για το μοντέλο, τη μέθοδο συνόρθωσης, τους στατιστικούς ελέγχους που χρησιμοποιήθηκαν στο πρόγραμμα καθώς και για τις εξισώσεις των παρατηρήσεων. Όσο αφορά τις εξισώσεις θα δοθούν αναλυτικές εξισώσεις για τις παρατηρήσεις γεωμετρικής, τριγωνομετρικής και μιας καινούριας κατηγορίας παρατηρήσεων στα κατακόρυφα δίκτυα, της GNSS χωροστάθμησης.

Στο τρίτο κεφάλαιο θα γίνει αναφορά σε όλες τις επιλογές που μας προσφέρει το λογισμικό Netist και θα δοθούν αρκετές εικόνες για την καλύτερη κατανόηση των επιλογών. Πέραν των κλασσικών επιλογών υπάρχουν και καινοτόμες επιλογές στο συγκεκριμένο λογισμικό όπως η επιλογή Variance Component Estimation, Approximate Coordinates Determination καθώς και άλλες οι οποίες θα αναφερθούν όπως είπαμε στο κεφάλαιο τρία.

Στο τέταρτο κεφάλαιο θα δοθούν κάποιες γενικές παρατηρήσεις για τη χρήση του λογισμικού καθώς και ένα εκτεταμένο παράδειγμα για μικτό χωροσταθμικό δίκτυο το οποίο θα μας δείξει διάφορες επιλογές συνόρθωσης και τις διαφορές τους. Ειδικότερα θα γίνει μια περαιτέρω αναφορά στο ίδιο παράδειγμα για τις περιπτώσεις διαφορετικού παραμετρικού μοντέλου στις GNSS παρατηρήσεις για καλύτερη κατανόηση τους.

Στο πέμπτο κεφάλαιο παρατίθενται τα συμπεράσματα που προκύπτουν από την παρούσα εργασία καθώς και κάποιες χρήσιμες μελλοντικές επεκτάσεις του προγράμματος.
ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ

Επειτα ακολουθεί το Παράρτημα. Στο Παράρτημα Α γίνεται αναφορά στους κωδικούς εισαγωγής
dεδομένων στο λογισμικό μέσο αρχείου Text ενώ στο Παράρτημα Β αναφέρονται τα μοντέλα γεωειδικώς που
χρησιμοποιήθηκαν στο πρόγραμμα ο μετασχηματισμό που χρησιμοποιήθηκε για τη δημιουργία τους, καθώς
και η μορφή με την οποία γίνεται η εισαγωγή τους στο πρόγραμμα.
ΚΕΦΑΛΑΙΟ 2: ΓΕΝΙΚΗ ΘΕΩΡΙΑ

Κεφάλαιο 2ο: Θεωρία

Στις γεωδαιτικές και τοπογραφικές εφαρμογές χρησιμοποιούμε ανάμεσα σε διάφορα κριτήρια ελαχιστοποίησης σφαλμάτων το κριτήριο των ελαχίστων τετραγώνων. Η συνόρθωση που ακολουθούμε είναι συνόρθωση με τη μέθοδο των ελαχίστων τετραγώνων με βάρη, χρησιμοποιώντας βάρη αντίστροφα των μεταβλητοτήτων των παρατηρήσεων.

Για τη συνόρθωση ενός δικτύου με τη μέθοδο των εξισώσεων παρατηρήσεων δημιουργούνται εξισώσεις που εκφράζουν κάθε παρατήρηση σαν συνάρτηση ενός συνόλου επιλεγμένων παραμέτρων. Οι παράμετροι αυτές επιλέγονται κατά τρόπο ώστε να προσδιορίζουν το σχήμα και το μέγεθος του δικτύου, καθώς και τη θέση των κορυφών επάνω στην επιφάνεια της Γης. Στην περίπτωση των χωροσταθμικών δικτύων άγνωστες παράμετροι είναι τα υψόμετρα των κορυφών του. Το πρόβλημα επομένως στη μέθοδο αυτή είναι ο σχηματισμός των εξισώσεων που συνδέουν κάθε παρατήρηση με τις άγνωστες παραμέτρους.

2.1 Γενικές σχέσεις συνόρθωσης με τη μέθοδο εξισώσεων παρατηρήσεων

Στην ενότητα αυτή θα αναφερθούμε στις σχέσεις και στις εξισώσεις που ισχύουν όταν χρησιμοποιούμε τη μέθοδο εξισώσεων παρατηρήσεων. Για τις παρακάτω σχέσεις που θα ακολουθήσουμε ισχύει ότι: \(m = \) αριθμός αγνώστων παραμέτρων και \(n = \) αριθμός παρατηρήσεων.

Η κάθε παρατήρηση συνδέεται με τις άγνωστες παραμέτρους με την παρακάτω σχέση:

\[y_i^a = f(x_1^a, x_2^a, \ldots, x_m^a) \quad (2.1) \]

\[y_i^b = f(x^b) \quad (2.2) \]

με \(i = 1, 2, \ldots, n \)

\[y^a = f(x^a) \quad (2.3) \]

με \(x^a \) να αποτελεί το διάνυσμα των αληθινών τιμών των αγνώστων παραμέτρων.

Η γραμμικοποίηση πραγματοποιείται με την εφαρμογή αναπτυγμάτων Taylor. Η γραμμική μορφή του συστήματος της σχέσης (2.3) δίνεται από την παρακάτω σχέση:

\[y^a = f(x^a) + \frac{df}{dx^b} \bigg|_0 (x^a - x^b) \quad (2.4) \]

\[y^a = y^b + Ax \]

με \(y^b \) το διάνυσμα των προσεγγιστικών τιμών των παρατηρήσεων, \(x \) το διάνυσμα των διορθώσεων των προσεγγιστικών τιμών των αγνώστων παραμέτρων και \(A \) τον πίνακα σχεδιασμού.

Για το σύνολο των παρατηρήσεων ισχύει:

\[y^a = y^b - v \quad (2.5) \]
ΚΕΦΑΛΑΙΟ 2: ΓΕΝΙΚΗ ΘΕΩΡΙΑ

Με αντικατάσταση της σχέσης (2.5) στην σχέση (2.4) προκύπτει το γραμμικοποιημένο σύστημα εξισώσεων παρατηρήσεων:

\[b = Ax + v \] \hspace{1cm} (2.6)

με \(b = y^b - y^0 \) να αποτελεί το διάνυσμα των ανηγμένων παρατηρήσεων.

Η λύση δίνεται με βάση το κριτήριο των ελαχίστων τετραγώνων

\[v^T P v = \min \] \hspace{1cm} (2.7)

Το σύστημα των κανονικών εξισώσεων προκύπτει από το παραπάνω κριτήριο των ελαχίστων τετραγώνων:

\[(A^T P A) \hat{x} = A^T P b \] \hspace{1cm} (2.8)

\[N \hat{x} = u \]

Ο πίνακας \(P \) αποτελεί πάντοτε διαγώνιο πίνακα με τα βάρη των παρατηρήσεων και ονομάζεται πίνακας βάρους των παρατηρήσεων. Ο \(N \) αποτελεί πάντοτε συμμετρικό πίνακα και αποτελεί τον πίνακα των συντελεστών των αγνώστων και παρουσιάζει αδυναμία βαθμού που εξαρτάται από τον τύπο των παρατηρήσεων. \(N \) αποτελεί το διάνυσμα των σταθερών όρων του συστήματος των κανονικών εξισώσεων. Τέλος \(\hat{x} \) αποτελεί τις διορθώσεις των αγνώστων παρατηρήσεων.

Η λύση του συστήματος των κανονικών εξισώσεων δίνεται από τη σχέση:

\[\hat{x} = N^{-1} u \] \hspace{1cm} (2.9)

Ο πίνακας \(N \) δεν αντιστρέφεται και γι' αυτό το λόγο θα πρέπει να εισάγουμε τις κατάλληλες δεσμεύσεις για τον ορισμό του συστήματος αναφοράς. Θα αναφερθούμε σε επόμενη ενότητα ειδικότερα για τις δεσμεύσεις που χρειαζόμαστε στο κατακόρυφο δίκτυο.

Αφού έχουν υπολογισθεί οι διορθώσεις \(\hat{x} \) υπολογίζουμε τις εκτιμήσεις \(a \) και \(\hat{v} \) και \(\hat{y} \) ως εξής:

\[\hat{x}^a = \hat{x}^0 + \hat{x} \] \hspace{1cm} (2.10)

\[\hat{v} = b - A \hat{x} \] \hspace{1cm} (2.11)

\[\hat{y}^a = y^b - \hat{v} \] \hspace{1cm} (2.12)

με \(\hat{x}^0 \) να αποτελεί τον πίνακα των προσεγγιστικών αγνώστων παραμέτρων, \(\hat{x}^a \) τον πίνακα των εκτιμήσεων των αγνώστων παραμέτρων, \(\hat{y}^a \) τον πίνακα των εκτιμήσεων των διορθωμένων παρατηρήσεων και \(\hat{v} \) τον πίνακα των εκτιμήσεων των σφαλμάτων των παρατηρήσεων.
ΚΕΦΑΛΑΙΟ 2: ΓΕΝΙΚΗ ΘΕΩΡΙΑ

Όσο αφορά τα στατιστικά στοιχεία του δικτύου μπορεί να υπολογιστεί μια ανεπηρέαστη μεταβλητότητα αναφοράς σύμφωνα με τη σχέση:

\[\hat{\sigma}^2 = \frac{v^T P_v}{f} \] (2.13)

Με \(f = n-m+k \) αποτελούν τους βαθμούς ελευθερίας του δικτύου και \(k \) ο αριθμός των δεσμεύσεων.

Τέλος υπολογίζονται οι εκτιμήσεις των πινάκων συμεταβλητοτήτων των αγνώστων παραμέτρων, των αφαλάματων των παρατηρήσεων και των παρατηρήσεων αντιστοίχως:

\[\hat{C}_x = C_x = \hat{\sigma}^2 \hat{Q}_x = \hat{\sigma}^2 N^{-1} \] (2.14)

\[\hat{C}_y = \hat{\sigma}^2 \hat{Q}_y = \hat{\sigma}^2 (P^{-1} - A N^{-1} A^T) \] (2.15)

\[\hat{C}_y' = \hat{\sigma}^2 A N^{-1} A^T \] (2.16)

ο θόρυβος των συνορθωμένων συναντητών μπορεί να υπολογιστεί μέσο του πίνακα των μεταβλητοτήτων των αγνώστων συναντητών και να διαχωριστεί σε θόρυβο των παρατηρήσεων (data noise) καθώς και σε θόρυβο του συστήματος αναφοράς (datum noise):

\[Q_{data}^x = (N + H^T W H)^{-1} N (N + H^T W H)^{-1} \] (2.17)

\[Q_{data}^y = (N + E^T W E)^{-1} N (N + E^T W E)^{-1} \] (2.18)

\[Q_{datum}^x = (N + H^T W H)^{-1} H^T W H (N + H^T W H)^{-1} \] (2.19)

Ισχύει

\[Q_{\text{αλλόκ.}}^x = Q_{\text{datum}}^x + Q_{\text{data}}^x \] (2.20)

Στην περίπτωση των εσωτερικών δεσμεύσεων \(Q_{\text{datum}}^x = 0 \).

Αναλυτικότερες δομές των πινάκων της παραπάνω ενότητας θα δοθούν σε επόμενη ενότητα (2.3) ειδικά για τα κατακόρυφα δίκτυα.
2.2 Δεσμεύσεις

Για τον ορισμό του κατακόρυφου δικτύου καθώς είναι μονοδιάστατο εξ ορισμού του χρειαζόμαστε μόνο μία δέσμευση, μία μετάθεση κατά τον κατακόρυφο άξονα. Στο σύστημα των κανονικών εξισώσεων εισάγονται οι εξισώσεις δεσμεύσεων:

\[c = H dx + \nu_c \] \hspace{1cm} (2.21)

με \(H \) να αποτελεί τον πίνακα σχεδιασμού ως προς τις άγνωστες παραμέτρους \(dx \), \(c \) το διάνυσμα των ανοιγμένων τιμών των δεσμεύσεων και \(\nu_c \) το σφάλμα της εξίσωσης δέσμευσης.

Για τις δεσμεύσεις χρησιμοποιήθηκε ένας πίνακας βάρους \(W \) και έτσι οι εξισώσεις των δεσμεύσεων μας αποτελούσαν ένα είδος ψευδοπαρατήρησης και συμμετέχουν στο σύστημα των κανονικών εξισώσεων σύμφωνα με τα παρακάτω:

\[
\begin{align*}
\left(A^T PA + H^T WH \right) dx &= A^T Pb + H^T Wc \\
N &= A^T PA + H^T WH \\
u &= A^T Pb + H^T Wc
\end{align*}
\] \hspace{1cm} (2.22)

Οι δεσμεύσεις που μπορούν να χρησιμοποιηθούν είναι είτε ελάχιστες είτε πλεονάζουσες. Ελάχιστες όταν ο αριθμός των δεσμεύσεων που πρέπει να εισαχθούν για να ορίσει το σύστημα αναφοράς είναι ίσος με την αδυναμία βαθμού του συστήματος, στην περίπτωση των κατακόρυφων δικτύων μία δέσμευση. Πλεονάζουσες όταν ο αριθμός των δεσμεύσεων είναι μεγαλύτερος από την αδυναμία βαθμού του συστήματος.

Επίσης μπορούν να χρησιμοποιηθούν δύο είδη δεσμεύσεων με είτε ελάχιστες είτε πλεονάζουσες δεσμεύσεις, οι εσωτερικές δεσμεύσεις και οι δεσμεύσεις συντεταγμένων με βάρη.

Στην περίπτωση των εσωτερικών δεσμεύσεων η εξίσωση 2.21 παίρνει την παρακάτω μορφή:

\[0 = Edx \] \hspace{1cm} (2.23)

Όταν εφαρμόζουμε ελάχιστες εσωτερικές δεσμεύσεις το σύστημα αναφοράς ελαχιστοποιεί το ίχνος του πίνακα συμεταβλητοτήτων των συντεταγμένων και οδηγούμαστε σε ένα μονοσήμαντο καθορισμένο σύστημα αναφοράς.

Στην περίπτωση των δεσμεύσεων συντεταγμένων με βάρη το σύστημα των κανονικών εξισώσεων παίρνει την παρακάτω μορφή:

\[
\begin{align*}
\left(A^T PA + W \right) dx &= A^T Pb + Wc \\
\end{align*}
\] \hspace{1cm} (2.24)

Ενδεικτικά ο πίνακας των δεσμεύσεων στα κατακόρυφα δίκτυα παίρνει τις παρακάτω μορφές: (\(m \) αριθμός των σταθμών, \(k \) αριθμός δεσμεύσεων)
ΚΕΦΑΛΑΙΟ 2: ΔΕΣΜΕΥΣΕΙΣ

i. Ελάχιστες Εσωτερικές

α) Πλήρης
E = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix} \quad (1 \times m)
Σε όλους τους σταθμούς τοποθετείται η μονάδα.

β) Μερικές
E = \begin{pmatrix} 0 & 1 & 1 & \cdots & 0 & 1 \end{pmatrix} \quad (1 \times m)
Εδώ επιλέγεται από το χρήστη τουλάχιστον ένας σταθμός ή και περισσότεροι.

ii. Πλεονάζουσες εσωτερικές δεσμεύσεις

Οι πλεονάζουσες εσωτερικές δεσμεύσεις εισάγονται με την προσθήκη μιας έξτρα παραμέτρου κλίμακας, δηλαδή μιας ακόμη δέσμευσης, η οποία ορίζει την κλίμακα μέσω των υψομέτρων των σταθμών. Πάλι έχουμε δύο περιπτώσεις:

α) Πλήρης
E = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ H_1^0 & H_2^0 & H_3^0 & \cdots & H_m^0 \end{pmatrix} \quad (2 \times m)
Στην πρώτη γραμμή τοποθετείται η μονάδα για όλους τους σταθμούς. Στη δεύτερη τα προσεγγιστικά υψόμετρα των σταθμών.

β) Μερικές
E = \begin{pmatrix} 0 & 1 & 0 & \cdots & 1 \\ 0 & H_2^0 & 0 & \cdots & H_m^0 \end{pmatrix} \quad (2 \times m)
Εδώ πρέπει να επιλεχθούν τουλάχιστον δύο σταθμοί.

iii. Δεσμεύσεις συντεταγμένων με βάρη

α) Ελάχιστες
H = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \quad (1 \times m)

β) Πλεονάζουσες
H = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad (k \times m)

Στις περιπτώσεις i,ii χρησιμοποιήθηκε ένας πίνακας βάρους W με Qx να είναι πάντα διαγώνιος με διαστάσεις m x m και περιέχει τις μεταβλητότητες των συντεταγμένων. Σε όλες τις περιπτώσεις των εσωτερικών δεσμεύσεων θεωρήθηκε ένα σταθερό sd για τις συντεταγμένες ίσο με 10^{-6} m.

W = [EQ^{ext}E^{T}]^{-1} \quad (2.25)
ΚΕΦΑΛΑΙΟ 2: ΔΕΣΜΕΥΣΕΙΣ

Για τις περιπτώσεις i.α) και ii.α):

\[
Q_{ext}^{i.α} = \begin{pmatrix}
\frac{1}{(10^6)^2} & 0 & 0 & 0 \\
0 & \frac{1}{(10^6)^2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{1}{(10^6)^2}
\end{pmatrix}
\]

Στην περίπτωση i.β)

\[
Q_{ext}^{i.β} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \frac{1}{(10^6)^2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

Στην περίπτωση ii.β)

\[
Q_{ext}^{ii.β} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \frac{1}{(10^6)^2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \frac{1}{(10^6)^2}
\end{pmatrix}
\]

Ενώ στην περίπτωση των δεσμεύσεων συντεταγμένων με βάρη o πίνακας \(W \) παίρνει τις παρακάτω μορφές:

α) \(W = Q_{ext}^{i.α} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \frac{1}{(sd_{i})^2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \) β) \(W = Q_{ext}^{ii.β} = \begin{pmatrix}
\frac{1}{(sd_{i})^2} & 0 & 0 & 0 \\
0 & \frac{1}{(sd_{i})^2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \)

όπου \(sd_{i} \) είναι η τυπική απόκλιση του υψομέτρου του σταθμού i. Όπως είναι φανερό στην περίπτωση των ελαχίστων είναι ένα σταθερός σταθμός ενώ στις πλεονάζουσες τουλάχιστον δύο.
2.3 Ειδικότερες σχέσεις και πίνακες για τα κατακόρυφα δίκτυα χωρίς τη συμμετοχή παρατηρήσεων GNSS χωροστάθμησης

Στην περίπτωση όπου δεν χρησιμοποιούνται παρατηρήσεις GNSS χωροστάθμησης το σύστημα των εξισώσεων παρατηρήσεων έχει την παρακάτω απλή μορφή:

\[b = Ax + v \]

Για τις παρακάτω σχέσεις θα ισχύει επίσης ότι: \(m = \) αριθμός αγνώστων και \(n = \) αριθμός παρατηρήσεων.

Για την σχέση (2.3) ισχύει:

\[f(\mathbf{x}) : \Delta H_j = H_j - H_i \]

με \(H \) αναφέρομαστε στο ορθομετρικό υψόμετρο του σημείου \(i,j \) ενώ \(\Delta H_j \) αποτελεί την ορθομετρική υψομετρική διαφορά ανάμεσα στα σημεία \(i,j \).

Οι αγνωστοί παράμετροι είναι τα ορθομετρικά υψόμετρα των σταθμών:

\[\mathbf{x}^a = \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_m \end{pmatrix} \ (m \times 1) \]

Ισχύει επίσης

\[b = y^b - y^0 \]

με \(y^b = \begin{pmatrix} \Delta H_1 \\ \Delta H_2 \\ \vdots \\ \Delta H_n \end{pmatrix}, y^0 = \begin{pmatrix} \Delta H_1^0 \\ \Delta H_2^0 \\ \vdots \\ \Delta H_n^0 \end{pmatrix} \ (n \times 1) \)

όπου \(y^b \) ο πίνακας με τις παρατηρήσεις και \(y^0 \) ο πίνακας με τις προσεγγιστικές ορθομετρικές υψομετρικές διαφορές.

Ο πίνακας διορθώσεων των ορθομετρικών υψομέτρων και ο πίνακας σχεδιασμού θα έχουν αντίστοιχα την παρακάτω μορφή:

\[\mathbf{x} = \begin{pmatrix} \delta H_1 \\ \delta H_2 \\ \vdots \\ \delta H_m \end{pmatrix} \ (m \times 1) \]

\[A = \frac{d f}{d \mathbf{x}} = \begin{pmatrix} : & : & : \\ -1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & -1 \end{pmatrix} \ (m \times n) \]
Η λύση δίνεται όπως προαναφέρθηκε στην προηγούμενη ενότητα με βάση το κριτήριο $\mathbf{v}^{T}\mathbf{P}\mathbf{v} = \min$

$\mathbf{N}\hat{x} = \mathbf{u}$

με $\mathbf{N} = \mathbf{A}^{T}\mathbf{P}\mathbf{A}$, $\mathbf{u} = \mathbf{A}^{T}\mathbf{P}\mathbf{b}$ και \mathbf{P} τον πίνακα βάρους των παρατηρήσεων να είναι πάντα διαγώνιος

$\mathbf{P} = \begin{pmatrix}
\frac{1}{\sigma^2_1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \frac{1}{\sigma^2_n}
\end{pmatrix} (n \times n)$

Αναλυτικότερη δομή των τυπικών αποκλίσεων των παρατηρήσεων και της μορφής που θα έχουν στον πίνακα \mathbf{P} θα δοθεί αργότερα ανάλογα με τον τύπο παρατήρησης που χρησιμοποιείται στην ενότητα των τύπων παρατηρήσεων (2.5).

Για τον ορισμό του συστήματος αναφοράς εισάγουμε δεσμεύσεις όπως είπαμε στην προηγούμενη ενότητα και προχωρούμε στη λύση των κανονικών εξισώσεων.

Οι διορθώσεις δίνονται από τους τύπους ανάλογα με τις εκάστοτε δεσμεύσεις:

$\hat{x} = (\mathbf{N} + \mathbf{E}^{T}\mathbf{W}\mathbf{E})^{-1}\mathbf{u}$ \hspace{1cm} (2.26)

$\hat{x} = (\mathbf{N} + \mathbf{H}^{T}\mathbf{W}\mathbf{H})^{-1}\mathbf{u}$ \hspace{1cm} (2.27)

Τα τελικά συνορθωμένα υψόμετρα δίνονται από τη σχέση:

$\hat{x}^* = \hat{x}^0 + \hat{x}$ \hspace{1cm} (2.28)

Με $\hat{x}^0 = \begin{pmatrix}
\mathbf{H}^0_1 \\
\mathbf{H}^0_2 \\
\vdots \\
\mathbf{H}^0_m
\end{pmatrix} (m \times 1)$

Επεκτά υπολογίζονται οι εκτιμήσεις των σφαλμάτων των παρατηρήσεων

$\hat{\mathbf{v}} = \mathbf{b} - \mathbf{A}\hat{x}$ \hspace{1cm} (2.29)

Οι βαθμοί ελευθερίας δίνονται από τη σχέση

$f = n - m + k$ \hspace{1cm} (2.30)

όπου n ο αριθμός των παρατηρήσεων, m ο αριθμός των σταθμών και k ο αριθμός των δεσμεύσεων.
Η εκτίμηση της α-posteriori μεταβλητότητας

$$\hat{\sigma}^2 = \hat{\mathbf{v}}^T \hat{\mathbf{P}} \hat{\mathbf{v}} / f \tag{2.31}$$

Ο πίνακας συμεταβλητοτήτων των συνορθωμένων υψομέτρων (αναλόγως με τις δεσμεύσεις)

$$\hat{\mathbf{C}}_x = \hat{\sigma}^2 \mathbf{Q}_x = \hat{\sigma}^2 (\mathbf{N} + \mathbf{E}^T \mathbf{W} \mathbf{E})^{-1} \tag{2.32}$$

$$\hat{\mathbf{C}}_x = \hat{\sigma}^2 \mathbf{Q}_x = \hat{\sigma}^2 (\mathbf{N} + \mathbf{H}^T \mathbf{W} \mathbf{H})^{-1} \tag{2.33}$$

όπου οι ρίζες των διαγωνιών στοιχείων του αποτελούν τις τυπικές αποκλίσεις του εκάστοτε συνορθωμένου υψομέτρου: $\hat{\sigma}_i = \sqrt{\hat{\mathbf{C}}_{ii}}$

Οι τυπικές αποκλίσεις της συνορθωμένης υψομετρικής διαφοράς δίνονται μέσο του πίνακα $\hat{\mathbf{C}}_x$, (2.16) και ειδικά για τα κατακόρυφα δίκτυα γεωμετρικής-τριγωνομετρικής χωροστάθμησης σύμφωνα με τον τύπο:

$$\hat{\sigma}_i = \sqrt{\hat{\mathbf{C}}_{ii}} + \sqrt{\hat{\mathbf{C}}_{ji}} - 2 \hat{\mathbf{C}}_{ij} \tag{2.34}$$

με $\hat{\mathbf{C}}_{ij}$ την συμεταβλητότητα των υψομέτρων \hat{H}_i, \hat{H}_j.

Οι τυπικές αποκλίσεις των σφαλμάτων δίνονται μέσο του πίνακα $\hat{\mathbf{C}}_x$, (2.17) και ειδικά για τα κατακόρυφα δίκτυα γεωμετρικής-τριγωνομετρικής χωροστάθμησης σύμφωνα με τον τύπο:

$$\hat{\sigma}_i = \sqrt{\sigma^2 (\mathbf{P}_{(i)})^{-1} - \hat{\sigma}^2} \tag{2.35}$$

όπου οι δείκτες i εδώ αναφέρονται στις παρατηρήσεις (πχ $\hat{\sigma}_i =$ τυπική απόκλιση σφάλματος 1^{t} παρατήρησης, $\mathbf{P}_{(i)}$ το 1^{o} διαγώνιο στοιχείο του πίνακα \mathbf{P} το οποίο αναφέρεται στην 1^t παρατήρηση και $\hat{\sigma}_i^2$ η τυπική απόκλιση της συνορθωμένης υψομετρικής διαφοράς της 1^{t} παρατήρησης).
2.4 Στατιστικοί έλεγχοι και εκτίμηση μεταβλητοτήτων

Στην ενότητα αυτή θα αναπτυχθούν δύο έλεγχοι: ο ολικός έλεγχος αξιοπιστίας καθώς και η σάρωση δεδομένων. Κριτήριο για τον έλεγχο αξιοπιστίας του δικτύου είναι και οι αριθμοί Redundancy για τους οποίους θα αναφερθούμε στην ενότητα 2.4 καθώς έχουν άμεση σχέση με τον τρόπο που επιλέχθηκε να γίνει η βέλτιστη εκτίμηση μεταβλητοτήτων των παρατηρήσεων.

2.4.1 Ολικός έλεγχος αξιοπιστίας δικτύου

Εφαρμόζεται ο ολικός έλεγχος σύμφωνα με τη μέθοδο Baarda και γίνεται έλεγχος της μηδενικής υπόθεσης εναντίον της εναλλακτικής:

\[H_0 : \sigma^2 = \sigma_0^2 \]
(2.36)

\[H_a : \sigma^2 \neq \sigma_0^2 \]
(2.37)

και \(\sigma_0^2 \) είναι μια αρχική τιμή της μεταβλητότητας άναφοράς η οποία ισούται με 1, εκτός της περίπτωσης που θα έχουμε αμφότερα γεωμετρικά χωροστάθμηση και το βάρος των παρατηρήσεων δίνεται με βάση την απόσταση της χωροστάθμησης και επιλεγεί να γίνει έλεγχος της ακρίβειας του χωροβάτη, τότε είναι ίση με την μεταβλητότητα του χωροβάτη που έχουμε εισάγει. Ενώ με \(\hat{\sigma}^2 \) είναι η άγνωστη μεταβλητότητα αναφοράς που η εκτίμηση της προκύπτει έπειτα από τη συνόρθωση μας.

Έτσι η μηδενική υπόθεση (31) γίνεται αποδεκτή όταν ισχύει η παρακάτω σχέση:

\[F^{1/2}_{f, \infty} \leq \frac{\hat{\sigma}^2}{\sigma_0^2} \leq F^{1/2}_{\infty} \]
(2.38)

όπου οι ποσότητες (εκατοστιαία σημεία) \(F^{1/2}_{f, \infty} \) και \(F^{1/2}_{\infty} \) παίρνονται από τους πίνακες των εκατοστιαίων σημείων της κατανομής \(F \) (Fisher) με βάση τους βαθμούς ελευθερίας \(f \), και το επίπεδο σημαντικότητας \(\alpha \).

Αν η παραπάνω ανισότητα (2.38) ισχύει τότε όταν ισχύει η παρακάτω σχέση:

\[t_i = \frac{f - 1}{f - \hat{v}_i} v_i^2 \]
(2.39)

με \(\hat{v}_i \) να αποτελεί το εσωτερικά ομαλοποιημένο σφάλμα, ενώ \(\hat{\sigma} \) η τυπική απόκλιση του σφάλματος της παρατήρησης όπως το ορίσαμε στη σχέση (32) και \(f \) οι βαθμοί ελευθερίας.
ΚΕΦΑΛΑΙΟ 2: ΣΤΑΤΙΣΤΙΚΟΙ ΕΛΕΓΧΟΙ

Η ανισότητα η οποία ελέγχεται είναι η παρακάτω:

\[|t_i| \leq t_{a/2}^{0.40} \tag{2.40} \]

όπου \(t_{a/2}^{0.40} \) είναι οι τιμές που παίρνονται από τον πίνακα των εκατοστιαίων σημείων της κατανομής \(t \). Το επίπεδο σημαντικότητας \(a \) συνήθως λαμβάνεται ίσο με 0.001.

Όσες παρατηρήσεις δεν πληρούν την παραπάνω ανισότητα είναι ύποπτες για τυχόν συστηματικά ή χονδροειδή σφάλματα. Για μια καλύτερη εικόνα για τον αν πρόκειται οι παρατηρήσεις να έχουν συστηματικά ή χονδροειδή σφάλματα λαμβάνεται και ο αριθμός \(\text{Redundancy} \) της παρατήρησης όπως θα δούμε στην επόμενη ενότητα.

2.4.3 Αριθμοί πλεονασμού (Redundancy) και εκτίμηση μεταβλητοτήτων

Η διαδικασία της εκτίμησης μεταβλητοτήτων χρησιμοποιείται για να δοθούν όσο το δυνατό καλύτερα βάρη στην κάθε ομάδα παρατήρησης μέσο των παρατηρήσεων που χρησιμοποιούνται σε κάθε δίκτυο.

Κάθε ομάδα παρατηρήσεων μπορεί να χαρακτηριστεί από μία εξωριστή ο-πριορί μεταβλητότητα αναφοράς \(\sigma^2 \). Έστω ότι έχουμε τρία διαφορετικά είδη παρατηρήσεων, γεωμετρική χωροστάθμηση, τριγωνομετρική χωροστάθμηση και GNSS χωροστάθμηση. Ο αρχικός πίνακας των μεταβλητοτήτων των παρατηρήσεων \(\sigma^2 \) μπορεί να πάρει την παρακάτω μορφή:

\[
\begin{bmatrix}
\mathbf{C}_1 & 0 & 0 \\
0 & \mathbf{C}_2 & 0 \\
0 & 0 & \mathbf{C}_3 \\
\end{bmatrix}
= \sigma^2
\begin{bmatrix}
\mathbf{P}_1 & 0 & 0 \\
0 & \mathbf{P}_2 & 0 \\
0 & 0 & \mathbf{P}_3 \\
\end{bmatrix}
+ \sigma^2
\begin{bmatrix}
\mathbf{P}_1 & 0 & 0 \\
0 & \mathbf{P}_2 & 0 \\
0 & 0 & \mathbf{P}_3 \\
\end{bmatrix}
+ \sigma^2
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

με \(\mathbf{Q}_i \) να αποτελούν τους υποπίνακες με διαγώνια μορφή που αντιστοιχούν σε κάθε μία από τις 3 ομάδες παρατηρήσεων. Οι μεταβλητότητες συνήθως είναι ίσες με τη μονάδα συνήθως.

Μια εκτίμηση των μεταβλητοτήτων μπορεί να γίνει μέσο της παρακάτω σχέσης:

\[
\sigma^2 = \mathbf{J}^t \mathbf{q} \tag{2.41}
\]

με \(\mathbf{J} = \text{trace}(\mathbf{KQ}_i \mathbf{KQ}_i) \), όπου \(\mathbf{K} = \mathbf{PQ}_i \mathbf{P} \) και \(\mathbf{q}_i = \mathbf{P}^t \mathbf{P} \) να αποτελεί το σύνολο των τετραγώνων των σφαλμάτων κάθε ομάδας ι παρατηρήσεων.

Η παραπάνω μέθοδος είναι γνωστή ως βέλτιστη τετραγωνική ανεπηρέαστη θετική εκτίμηση (Best Quadratic Unbiased Non-Negative Estimation-BQUNE) καθώς κάθε φορά η εκτίμηση έχει θετική τιμή.
Σύμφωνα με τον Forstner η σχέση (2.41) απλοποιείται και χρησιμοποιούνται μόνο τα διαγώνια στοιχεία του J:

\[\hat{\sigma}^2_\alpha = \frac{q_i}{\text{trace}(KQ,KQ_i)} \] (2.42)

Η παραπάνω διαδικασία είναι επαναληπτικού χαρακτήρα έως ότου οι μεταβλητότητες να συγκλίνουν στη μονάδα, κάτι το οποίο σημαίνει πολλούς πολλαπλασιασμούς πινάκων. Έτσι εν τέλει χρησιμοποιήθηκε η πιο απλοποιημένη σχέση σύμφωνα με τις εξισώσεις του Persson και χρησιμοποιούνται οι αριθμοί πλεονασμού της κάθε ομάδας παρατήρησης. Η 2.42 γίνεται:

\[\hat{\sigma}^2_\alpha = \frac{q_i}{\sum_{b=1}^{n} \text{Red}(b)} \] (2.43)

όπου εδώ η αναφέρεται στο σύνολο των παρατηρήσεων κάθε ομάδας.

Ο αριθμός πλεονασμού για κάθε παρατήρηση προκύπτει από τη σχέση

\[\text{Red}(i) = \hat{Q}_{(w)}^{(i,j)} P_{(i,j)} \] (2.44)

Το άθροισμα των αριθμών αυτών όλων των παρατηρήσεων πρέπει να μας δίνει ίσο αποτέλεσμα με τους βαθμούς ελευθερίας του δικτύου. Επίσης ο αριθμός αυτός για κάθε παρατήρηση αυστηρά παίρνει τιμές μεταξύ του 0 και του 1.

Έτσι για τον κάθε τύπο παρατηρήσεων μπορούμε να υπολογίσουμε το άθροισμα των τετραγωνικών σφαλμάτων τους (v) και διαιρώντας με το άθροισμα των αριθμών τους να βρίσκουμε μια εκτίμηση για τη μεταβλητότητά τους.

\[\left(\hat{\sigma}^2 \right)^{SL} = \frac{\left(\hat{v}^TPv \right)^{SL}}{\sum_i \text{Red}(i)} \quad \left(\hat{\sigma}^2 \right)^{TL} = \frac{\left(\hat{v}^TPv \right)^{TL}}{\sum_i \text{Red}(i)} \quad \left(\hat{\sigma}^2 \right)^{GNSS/N} = \frac{\left(\hat{v}^TPv \right)^{GNSS/N}}{\sum_i \text{Red}(i)} \] (2.45)

Αυτό ισχύει και για την περίπτωση που έχουμε δεσμεύσεις υψομέτρων με γνωστό βάρος. Στην ουσία αυτές οι δεσμεύσεις εισάγουν ψευδοπαρατηρήσεις υψομέτρων και έχουν και αυτές Redundancy. Το άθροισμα όλων των αριθμών Redundancy των παρατηρήσεων-ψευδοπαρατηρήσεων πρέπει πάλι να δίνει f. Το σφάλμα τους (v) είναι στην ουσία η διόρθωση του υψομέτρου του σταθμού \(\hat{x} = x^0 - \hat{x} \) ενώ το βάρος τους είναι \(\frac{1}{\sigma_i^2} \) με σι την τυπική απόκλιση του υψομέτρου του εκάστοτε σταθμού και ο οποίος έχει δεσμευτεί ως Weighted Station στις δεσμεύσεις με γνωστές συντεταγμένες.
Εκτίμηση μεταβλητότητας για κάθε ομάδα μπορεί να γίνει με διάφορους τρόπους. Για τα κατακόρυφα δίκτυα επιλέχτηκε ο παρακάτω τρόπος. Ο αρχικός συνολικός πίνακας Π πολλαπλασιάζεται με τον τελικό Π(−1) και προκύπτει ένας καινούριος πίνακας βάρους ο οποίος έχει ίδιες τιμές για κάθε ομάδα παρατηρήσεων. Η τιμή αυτή για κάθε ομάδα παρατηρήσεων αποτελεί την τελική a-priori μεταβλητότητα η οποία εμφανίζεται και στα αποτελέσματα του Variance Component Estimation.
ΚΕΦΑΛΑΙΟ 2: ΟΜΑΔΕΣ ΠΑΡΑΤΗΡΗΣΕΩΝ

2.5 Ομάδες παρατηρήσεων

Σε αυτή την ενότητα θα αναφερθούμε στις ομάδες των παρατηρήσεων που μπορούν να χρησιμοποιηθούν στο πρόγραμμα. Επίσης θα δοθούν για κάθε ομάδα, η γενική εξίσωση παρατήρησης καθώς και η ακρίβεια τους και ο τρόπος που εισάγονται στον πίνακα βάρους P.

2.5.1 Γεωμετρική Χωροστάθμηση

Η παρατήρηση γεωμετρικής χωροστάθμησης προκύπτει από τον μέσο όρο μετάβασης-επιστροφής γεωμετρικής χωροστάθμησης $\Delta H^0 = \frac{1}{2}(H^e_j - H^e_i)$

Η γενική μορφή της εξίσωσης παρατήρησης είναι η παρακάτω:

$$
\left(\Delta H^0_j \right)^{SL} - \left(\Delta H^0_i \right)^{SL} = H_j^0 - H_i^0 + v^0_i \tag{2.49}
$$

Η ακρίβεια των παρατηρήσεων της γεωμετρικής χωροστάθμησης εισάγεται στο πρόγραμμα με βάση το μήκος της χωροστάθμησης L_{ij} την τυπική τους απόκλιση αν είναι γνωστή. Στον πίνακα βάρους P έχουν την παρακάτω μορφή:

i. Με βάση το μήκος της χωροστάθμησης $p_{ij} = \frac{1}{\sigma_{inst,Acc}^2 L_{ij} \left(\hat{\sigma}^2 \right)^{SL}}$

 με $\sigma_{inst,Acc}$ την ακρίβεια του οργάνου, L_{ij} το μήκος της χωροστάθμησης μεταξύ των δύο σημείων και $\left(\hat{\sigma}^2 \right)^{SL}$ μια a-priori μεταβλητότητα των παρατηρήσεων της γεωμετρικής χωροστάθμησης

ii. Με βάση την τυπική απόκλιση της παρατήρησης $p_{ij} = \frac{1}{\sigma_{\Delta H_{ij}}^2 \left(\hat{\sigma}^2 \right)^{SL}}$

Στις περιπτώσεις όπου έχουμε παρατηρήσεις γεωμετρικής χωροστάθμησης με βάση το μήκος της χωροστάθμησης L_{ij} $\frac{\sigma_{\Delta H_{ij}}}{10^3}$ L_{ij} $\tag{2.50}$

με $\sigma_{\Delta H_{ij}}$ να είναι σε μέτρα και L_{ij} σε χιλιόμετρα.

* Συνόρθωση με παρατηρήσεις αμιγώς γεωμετρικής χωροστάθμησης με βάρος την απόσταση της χωροστάθμησης

Ενδιαφέρον παρουσιάζει η περίπτωση στην οποία οι παρατηρήσεις του δικτύου μας είναι αμιγώς γεωμετρικής χωροστάθμησης και τις έχουμε εισάγει με βάση την απόσταση της χωροστάθμησης τότε στη λύση με οποιεσδήποτε δεσμεύσεις έχουμε τις εξής δύο επιλογές:
ΚΕΦΑΛΑΙΟ 2: ΟΜΑΔΕΣ ΠΑΡΑΤΗΡΗΣΕΩΝ

2.1. Ερώτηση στην περίπτωση δικτύου αμιγώς γεωμετρικής χωροστάθμησης με αποστάσεις

Με επιλογή No στο παραπάνω μήνυμα τα στοιχεία του πίνακα P είναι όπως περιγράφονται στην προηγούμενη ενότητα 2.5.1. Στο τέλος της συνόρθωσης μας παρουσιάζει στην καρτέλα Adjustment Summary τα Statistical Tests όπου βλέπουμε ότι στο F-test η a-priori μεταβλητότητα είναι ίση με μονάδα.

2.2. Αποτελέσματα στατιστικών ελέγχων με επιλογή «Νο» στην εικόνα 2.1

Με επιλογή Yes όμως τα στοιχεία του πίνακα P διαφοροποιούνται ως εξής:

\[
p_0 = \frac{1}{\text{L}_n(\hat{\sigma}^2)_{\alpha}}
\]

Και έτσι στο τέλος της συνόρθωσης μας παρουσιάζει στην καρτέλα Adjustment Summary τα Statistical Tests όπου βλέπουμε ότι στο F-test η a-priori μεταβλητότητα είναι ίση με την ακρίβεια του χωροβάτη που έχουμε εισάγει στα Settings και μας ενημερώνει αν περνάει ή όχι σε αυτή την περίπτωση η ακρίβεια του χωροβάτη από τον ολικό έλεγχο.

2.3. (Αριστερά) Αποτελέσματα στατιστικών ελέγχων με επιλογή «Yes» στην εικόνα 2.1, (Δεξιά) Ακρίβεια χωροβάτη από τα Settings
2.5.2 Τριγωνομετρική χωροστάθμηση

Η γενική μορφή της εξίσωσης παρατήρησης είναι η παρακάτω:

\[
\begin{align*}
\left(\Delta H^m_{ij}\right)^{\text{IV}} - \left(\Delta H^m_{ij}\right)^{\text{III}} = H_j - H_i + v_{\Delta H^m_{ij}} = S_{ij} \frac{\cos(Z_i - g_i)}{\cos(g_i)} + (Y_{Oi} - Y_{ij}) + v_{\Delta H^m_{ij}},
\end{align*}
\]

(2.51)

\[
g_{ij} = \frac{d_{ij} \sin Z_i}{2R_i}
\]

\[
R_i = R + h_i
\]

με \(S_{ij}\) την κεκλιμένη απόσταση μεταξύ των σημείων, \(Z_i\) την ζενίθεια γωνία, \(g_i\) την διόρθωση λόγω καμπυλότητας της Γης, \(R\) μια μέση ακτίνα καμπυλότητας της Γης, \(h_i\) το υψόμετρο του σημείου \(i\), \(Y_{Oi}\) το ύψος οργάνου και \(Y_{ij}\) το ύψος στόχου.

Στο πρόγραμμα στο \(R_i\) χρησιμοποιείται μια μέση ακτίνα της καμπυλότητας της Γης \(\text{ισο}\) με 6371000 μέτρα και όσο αφορά το υψόμετρο του σημείου δε λαμβάνεται υπόψιν καθώς είναι αμελητέα ποσότητα σε σχέση με την ακτίνα καμπυλότητας της Γης.

Για τις συνήθεις τοπογραφικές εργασίες ενδεικτικά για μία απόσταση 500 μέτρων η διαφορά λόγω καμπυλότητας της Γης είναι περίπου 2 με 2.5 cm, οπότε έπρεπε να ληφθεί υπόψιν η διόρθωση της λόγω καμπυλότητας της Γης.

Όσο αφορά την τυπική απόκλιση της παρατήρησης εφαρμόστηκε ο νόμος μετάδοσης σφαλμάτων στην παρακάτω εξίσωση, καθώς η διαφορά στην τυπική απόκλιση με βάση τον παραπάνω τύπο και αυτόν που ακολουθεί είναι αμελητέα ακόμη και για πολύ μεγάλες αποστάσεις:

\[
\begin{align*}
\left(\Delta H^m_{ij}\right)^{\text{IV}} - \left(\Delta H^m_{ij}\right)^{\text{III}} = S_{ij} \cos Z_i + (Y_{Oi} - Y_{ij}) + v_{\Delta H^m_{ij}},
\end{align*}
\]

(2.52)

Με βάση το νόμο μετάδοσης των σφαλμάτων έχουμε:

\[
y = f(x) \quad x = \left(S_{ij}, Z_{ij}\right) \quad f(x) = S_{ij} \cos Z_{ij} + (Y_{Oi} - Y_{ij})
\]

\[
C_{xx} = \begin{pmatrix}
\sigma_x^2 & \sigma_{xz} \\
\sigma_{xz} & \sigma_z^2
\end{pmatrix}
\quad A = \frac{dy}{dx} = \begin{pmatrix}
\cos Z_{ij} & -S_{ij} \sin Z_{ij}
\end{pmatrix}
\quad C_{yy} = \begin{pmatrix}
\sigma_y^2
\end{pmatrix}
= AC_{xx}A^T
\]

και καταλήγουμε στην σχέση:

\[
\sigma_{\Delta H^m_{ij}}^2 = \sigma_x^2 \cos^2(Z_{ij}) + \sigma_z^2 \sin^2(Z_{ij}) S_{ij}^2
\]

(2.53)

με \(\sigma_x\) την τυπική απόκλιση της κεκλιμένης απόστασης των σημείων και \(\sigma_z\) την τυπική απόκλιση της ζενίθειας γωνίας.
ΚΕΦΑΛΑΙΟ 2: ΟΜΑΔΕΣ ΠΑΡΑΤΗΡΗΣΕΩΝ

Στην πίνακα βάρους Ρ έχουν την παρακάτω μορφή:

\[p_{ij} = \frac{1}{\sigma_{\Delta h_{ij}}^2 + (\sigma^2)^{TL}} \]

όπου όπως και στην περίπτωση της γεωμετρικής χωροστάθμησης \((\sigma^2)^{TL}\) αποτελεί μια a-priori μεταβλητότητα των παρατηρήσεων της τριγωνομετρικής χωροστάθμησης

2.5.3 GNSS χωροστάθμηση

Στο πρόγραμμα μπορούμε να εισάγουμε ένα τελείως καινούριο είδος παρατηρήσεων, τις παρατηρήσεις GNSS χωροστάθμησης. Η παρατήρηση αποτελεί παρατήρηση ανά πλευρά δηλαδή μεταξύ δύο σημείων. Στην ουσία ή «άμεση» παρατήρηση προέρχεται από GNSS δέκτη και αποτελεί το γεωμετρικό υψόμετρο (h) για δύο σημεία στην επιφάνεια της Γης. Γνωρίζοντας και το υψόμετρο του γεωειδούς (N) στα δύο σημεία μπορούμε να υπολογίσουμε το ορθομετρικό τους υψόμετρο (h = H + N) και σχηματίζοντας την ορθομετρική υψομετρική τους διαφορά να τις συμπεριλάβουμε στη συνόρθωση του δικτύου μας.

Επίσης χρησιμοποιήθηκαν τρία παραμετρικά μοντέλα για να εκφράσουν τις συστηματικές «διαφορές» μεταξύ του μοντέλου γεωειδούς και του χωροσταθμικού συστήματος αναφοράς.

Η μορφή της εξίσωσης παρατήρησης ανάλογα με το πόσες παραμέτρους θα χρησιμοποιήσουμε παίρνει τις παρακάτω τέσσερις μορφές:

i. Μόνο κλίμακα:

\[
\left(\Delta H_{ij}^{GNSS/N} \right) - \left(\Delta H_{ij}^{GNSS/N} \right) = H_{ij} - (H_{ij}^{\phi} - H_{ij}^{\phi})a_{1i} + v_{\Delta H_{ij}}^{GNSS/N} \tag{2.54}
\]

ii. Δύο συστηματικές κλίσεις(tilts) κατά τις διευθύνσεις N/S και W/E :

\[
\left(\Delta H_{ij}^{GNSS/N} \right) - \left(\Delta H_{ij}^{GNSS/N} \right) = H_{ij} - (H_{ij}^{\phi} - H_{ij}^{\phi})a_{1i} + R(\cos\phi_{ij}(\lambda_{ij} - \lambda_{i}) - \cos\phi_{ij}(\lambda_{ij} - \lambda_{i}))a_{2i} + v_{\Delta H_{ij}}^{GNSS/N} \tag{2.55}
\]

iii. Δύο κλίσεις και μία κλίμακα:

\[
\left(\Delta H_{ij}^{GNSS/N} \right) - \left(\Delta H_{ij}^{GNSS/N} \right) = H_{ij} - (H_{ij}^{\phi} - H_{ij}^{\phi})a_{1i} + R(\cos\phi_{ij}(\lambda_{ij} - \lambda_{i}) - \cos\phi_{ij}(\lambda_{ij} - \lambda_{i}))a_{2i} + (H_{ij}^{\phi} - H_{ij}^{\phi})a_{3i} + v_{\Delta H_{ij}}^{GNSS/N} \tag{2.56}
\]
ΚΕΦΑΛΑΙΟ 2: ΟΜΑΔΕΣ ΠΑΡΑΤΗΡΗΣΕΩΝ

iv. Καμία:

\[
\left(\Delta h_{ij}^{\text{GNSS/N}} \right)^2 - \left(\Delta h_{ij}^{\text{GNSS/N}} \right)^2 = H_j - H_i + v_{\Delta h_{ij}}^{\text{GNSS/N}} \quad (2.57)
\]

με \(\Delta \) να είναι το μέσο γεωδαιτικό μήκος των σημείων του δικτύου και \(R \) είναι μια μέση τιμή της ακτίνας καμπυλότητας της Γης ίση με 6371000 μέτρα.

Σημειώνεται ότι στην 4η περίπτωση η διαδικασία της συνόρθωσης είναι η ίδια με αυτή που περιγράφεται στην ενότητα 2.3 και δε φέρει κάποια τροποποίηση όπως θα δούμε παρακάτω για τις πρώτες τρεις περιπτώσεις.

Η ακρίβεια των παρατηρήσεων GNSS χωροστάθμησης δίνεται από τη σχέση

\[
\sigma^2_{\Delta h_{ij}^{\text{GNSS/N}}} = \sigma^2_{\Delta h} + \sigma^2_{\Delta N} \quad (2.58)
\]

και εισάγεται στον πίνακα βάρους με την μορφή:

\[
p_{ij} = \frac{1}{\sigma^2_{\Delta h_{ij}^{\text{GNSS/N}}}} \left(\hat{\sigma}^2 \right)^\text{GNSS/N}
\]

όπου \(\left(\hat{\sigma}^2 \right)^\text{GNSS/N} \) είναι μια a-priori μεταβλητότητα για τις παρατηρήσεις της GNSS χωροστάθμησης.

Οι παράμετροι κλίσης του μοντέλου γεωειδούς (ως προς το χωροσταθμικό σύστημα αναφοράς του δικτύου) δίνονται σε m/km ενώ η παράμετρος κλίμακας είναι αδιάστατη και δίνεται σε ppm, όσο αφορά τα αποτελέσματα που δίνει το πρόγραμμα.
2.6 Διαφοροποίηση μοντέλου και λύσης με συμμετοχή παρατηρήσεων GNSS χωροστάθμησης

Σε αυτή την περίπτωση το σύστημα εξισώσεων παρατηρήσεων αλλάζει σε

\[\mathbf{b} = \mathbf{A} \delta \mathbf{x} + \mathbf{B} \delta \mathbf{k} + \mathbf{v} \quad (2.59) \]

Ο πίνακας σχεδιασμού \(\mathbf{A} \) έχει την ίδια μορφή όπως και στην ενότητα 2.3 καθώς οι παρατηρήσεις πάλι είναι υψομετρικές διαφορές.

Ο πίνακας σχεδιασμού \(\mathbf{B} \) όμως που αναφέρεται στις άγνωστες παραμέτρους που εισήγαμε στην ενότητα 2.5.3 θα ακολουθεί τα παρακάτω:

\[
\mathbf{B} = \frac{d \mathbf{f}}{d \mathbf{k}} \quad \mathbf{k} = \begin{pmatrix} \delta \alpha_1 \\ \delta \alpha_2 \\ \delta \alpha_3 \end{pmatrix}
\]

με \(\mathbf{k} \) να αποτελεί το διάνυσμα των αγνώστων παραμέτρων που εισάγουμε.

Ανάλογα με το πόσες παραμέτρους θα διαλέξουμε να χρησιμοποιήσουμε οι διαστάσεις του \(\mathbf{B} \) διαφοροποιούνται καθώς και η μορφή του ως εξής:

i. Μία παράμετρο (κλίμακα): \((1 \times n)\)

από σχέση \((2.54)\) \(f(k) = (H_j^0 - H_i^0) \alpha_1 + v_{\text{GNSS/N}}^{\text{Δ}H} \)

\[
\mathbf{B}^T = \begin{pmatrix} \Delta H_1^{\text{GNSS/N}} \\Delta H_2^{\text{GNSS/N}} \\vdots \\Delta H_n^{\text{GNSS/N}} \end{pmatrix}
\]

όπου οι δείκτες 1,2,..,\(n \) υποδεικνύουν τις παρατηρήσεις GNSS χωροστάθμησης \((\Delta H_1^{\text{GNSS/N}} = 1^\text{η} \) παρατήρηση GNSS)

ii. Δύο παραμέτρους (2 κλίσεις): \((2 \times n)\)

από σχέση \((2.55)\) \(f(k) = R(\phi_j - \phi_i) \alpha_1 + R(\cos \phi_j (\lambda_j - \bar{\lambda}) - \cos \phi_i (\lambda_i - \bar{\lambda})) \alpha_2 + v_{\text{Δ}H}^{\text{Δ}H} \)

\[
\mathbf{B}^T = \begin{pmatrix} R(\phi_1^j - \phi_1^i) & R(\phi_2^j - \phi_2^i) & \cdots & R(\phi_n^j - \phi_n^i) \\ R[\cos \phi_j^j(\lambda_j^j - \bar{\lambda}) - \cos \phi_i^i(\lambda_i^i - \bar{\lambda})] & R[\cos \phi_j^j(\lambda_j^j - \bar{\lambda}) - \cos \phi_i^i(\lambda_i^i - \bar{\lambda})] & \cdots & R[\cos \phi_j^n(\lambda_j^n - \bar{\lambda}) - \cos \phi_i^n(\lambda_i^n - \bar{\lambda})] \end{pmatrix}
\]

με \(\phi_j^i, \lambda_j^i \) να αποτελούν το γεωδαιτικό πλάτος του \(j \) σημείου της \(1^\text{η} \) παρατήρησης GNSS και το γεωδαιτικό μήκος αντίστοιχα.
iii. Τρεις παραμέτρους (2κλίσεις, 1κλίμακα): (3 x n)

από σχέση (2.56) \(f(k) = R(\phi_j - \phi_i)\alpha_3 + R(\cos\phi_i(\lambda_j - \lambda) - \cos\phi_i(\lambda_i - \lambda))\alpha_2 + (H_j^0 - H_i^0)\alpha_3 + \nu_{\text{GNSS/N}}^{\text{ΔΗij}} \)

\[
B^{-1} = \begin{pmatrix}
R(\phi_j^1 - \phi_i^1) & R(\phi_j^2 - \phi_i^2) & \cdots & R(\phi_j^n - \phi_i^n) \\
R[\cos\phi_j(\lambda_j^1 - \lambda) - \cos\phi_i(\lambda_i^1 - \lambda)] & R[\cos\phi_j(\lambda_j^2 - \lambda) - \cos\phi_i(\lambda_i^2 - \lambda)] & \cdots & R[\cos\phi_j(\lambda_j^n - \lambda) - \cos\phi_i(\lambda_i^n - \lambda)] \\
\Delta H_i^{\text{GNSS/N}} & \Delta H_j^{\text{GNSS/N}} & \cdots & \Delta H_k^{\text{GNSS/N}}
\end{pmatrix}
\]

με \(\phi_i^1, \lambda_i^1 \) να αποτελούν το γεωδαιτικό πλάτος του ι θημείου της 1η παρατήρησης GNSS και το γεωδαιτικό μήκος αντίστοιχα.

Τα \((H_j^0 - H_i^0) \) στις παραπάνω περιπτώσεις αντικαταστάθηκαν από \(\Delta H_i^{\text{GPS/N}} \).

Όσο αφορά τις διαστάσεις το διανύσματος \(k \) είναι προφανές ότι είναι όσες οι άγνωστες παράμετροι που εισάγουμε.

Επειδή οι εξτρά παράμετροι που εισάγονται δεν έχουν καμία σχέση με τον ορισμό του συστήματος αναφοράς απαλείφονται πριν γίνει η αντιστροφή του πίνακα \(N \). Πιο συγκεκριμένα η απαλοιφή γίνεται ως εξής:

Σύστημα εξισώσεων παρατήρησης: \(b = [A \ B] \begin{bmatrix} x \\ k \end{bmatrix} + v \)

Κανονικό σύστημα εξισώσεων:

\[
\begin{bmatrix}
N_{xx} & N_{sk} \\
N_{sk}^T & N_{kk}
\end{bmatrix}
\begin{bmatrix}
x \\ k
\end{bmatrix} = u_x - N_{sk} u_k
\]

\[
N_{xx} = A^T PA \quad N_{sk} = A^T PB \quad N_{kk} = B^T PB
\]

\[
N_{sk} = N_{sk} - N_{sk} N_{kk}^{-1} N_{sk}^T \quad (2.60)
\]

\[
U_{sk} = u_s - N_{sk} N_{kk}^{-1} u_k \quad (2.61)
\]

Έχοντας τον \(N_{sk} \) και τον \(U_{sk} \) προχωρούμε στον υπολογισμό των διορθώσεων των αγνώστων υψομέτρων μας (\(\hat{x} \)):

\[
\hat{x} = (N_{sk} + H^T WH)^{-1} U_{sk} \quad \hat{x} = (N_{sk} + E^T WE)^{-1} U_{sk} \quad (2.62)
\]

Οι δεσμεύσεις ισχύουν όπως περιγράφηκαν σε προηγούμενη ενότητα 2.2.
ΚΕΦΑΛΑΙΟ 2: ΣΥΝΟΡΘΩΣΗ ΜΕ ΣΥΜΜΕΤΟΧΗ GNSS ΠΑΡΑΤΗΡΗΣΕΩΝ

Ο τύπος για τον υπολογισμό των σφαλμάτων των παρατηρήσεων γίνεται:

\[\hat{v} = G(b - A\hat{x}) \quad (2.63) \]

με \(G = [I - B(B^T P B)^{-1}B^T] \)

Για τις τυπικές αποκλίσεις των συνορθωμένων υψομέτρων δεν αλλάζει κάτι οι τύποι παραμένουν ίδιοι όπως αναφέρθηκαν σε προηγούμενες ενότητες (σχέσεις: 2.14, 2.17, 2.18, 2.19, 2.20, 2.32, 2.33).

Ο πίνακας των συμεταβλητοτήτων των συνορθωμένων παρατηρήσεων γίνεται:

\[\hat{\Sigma}_v = \hat{\Sigma}_v^0 (B^T P B)^{-1} B^T + G(AC_k^{\text{λυσα}} A^T)G^T \quad (2.64) \]

Ο πίνακας των συμεταβλητοτήτων των σφαλμάτων των παρατηρήσεων γίνεται:

\[\hat{\Sigma}_v = \hat{\Sigma}_v^0 P \cdot \hat{\Sigma}_v \quad (2.65) \]

Οι ρίζες των διαγωνιών στοιχείων των πινάκων \(\hat{\Sigma}_y \) \(\hat{\Sigma}_v \) αποτελούν τις τυπικές αποκλίσεις των συνορθωμένων παρατηρήσεων και των σφαλμάτων αντίστοιχα.

Τέλος οι διορθώσεις των προσεγγιστικών τιμών των παραμέτρων μας (\(\alpha_1, \alpha_2, \alpha_3 \)), οι οποίες στην δική μας περίπτωση αποτελούν και τις τελικές τιμές των παραμέτρων μας, δίνονται από τον παρακάτω τύπο:

\[\hat{k} = N_{kk}^{-1}(u_k - \hat{N}_{kk} \hat{x}) \quad (2.66) \]

Ενώ η τυπική τους απόκλιση από τον τύπο:

\[\hat{Q}_k = N_{kk}^{-1}N_{kk}^{-1} \hat{Q}_x N_{kk} N_{kk}^{-1} \quad (2.67) \]

Όπου ανάλογα τις δεσμεύσεις

\[\hat{Q}_x = (N+E^T WE)^{-1} \]
\[\hat{Q}_x = (N+H^T WH)^{-1} \]

με \(E \) και \(H \) να αποτελούν τους πίνακες των δεσμεύσεων, των εσωτερικών και των δεσμεύσεων συντεταγμένων αντίστοιχα, και \(W \) έναν πίνακα βάρους, όπως περιγράφθηκαν σε προηγούμενη ενότητα (2.2).

Όπως είναι φανερό οι πράξεις πινάκων που πρέπει να γίνουν είναι αρκετές και από προγραμματιστικής σκοπούς έχουν γίνει αρκετές απλοποιήσεις χωρίς βέβαια να επηρεαζόταν τα τελικά αποτελέσμαta. Όλες οι πράξεις πινάκων και αρκετες απλοποιήσεις χωρίς βέβαια να επηρεαζόταν τα τελικά αποτελέσμαta. Όλες οι πράξεις πινάκων και αρκετες απλοποιήσεις χωρίς βέβαια να επηρεαζόταν τα τελικά αποτελέσμαta. Ολες οι πράξεις πινάκων και αρκετες απλοποιήσεις χωρίς βέβαια να επηρεαζόταν τα τελικά αποτελέσμαta. Στο επόμενο κεφάλαιο θα δούμε όλες τις επιλογές που δίνει το λογισμικό στο χρήστη.
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

Κεφάλαιο 3ο: Επιλογές προγράμματος

Το πρόγραμμα αναπτύχθηκε στο Microsoft Visual Studio Express 2012 και η γλώσσα προγραμματισμού ήταν η αντικειμενοστραφής γλώσσα προγραμματισμού Visual Basic.Net v.11. Οι ελάχιστες απαιτήσεις είναι το NetFramework 4.0 και προαιρετικά Excel 2003 για εύκολη εισαγωγή και εξαγωγή δεδομένων και αποτελεσμάτων αντίστοιχα. Εκδόσεις μεγαλύτερες των παραπάνω σαφώς και υποστηρίζονται. Επίσης για την υλοποίηση του προγράμματος χρησιμοποιήθηκαν Xml για την αποθήκευση των Settings του εκάστοτε project, Html για την καλύτερη απεικόνιση των αποτελεσμάτων της συνόρθωσης και Sqlite για την αποθήκευση των δεδομένων του κάθε project.

Με την εγκατάσταση του προγράμματος δημιουργείται ένας φάκελος στον σκληρό δίσκο του χρήστη με την ονομασία NetistProjects καθώς και μία συντόμευση του προγράμματος στην επιφάνεια εργασίας. Ο φάκελος αυτός αποτελεί την Default τοποθεσία για την αποθήκευση των project του χρήστη, χωρίς βέβαια να τον δεσμεύει για την τοποθεσία που θέλει να αποθηκεύσει. Τα αρχεία που αποθηκεύονται για το κάθε project είναι δύο, ένα αρχείο *.nex και ένα *.ndb.

3.1 Menu ➔ Project

Η επιλογή Project περιέχει επιλογές που έχουν να κάνουν με τη δημιουργία, την αποθήκευση, το φόρτωμα Project καθώς και τις λειτουργίες Recent Files και Exit Project/Netist.

3.1.1 New Project

Με την επιλογή New Project ο χρήστης μεταφέρεται στην παρακάτω φόρμα

![New Project Form](image)

3.1. (Αριστερά) Φόρμα δημιουργίας καινούριου project, (Δεξιά) Επιλογές δικτύου

Ο χρήστης μπορεί να διαλέξει όνομα και ανάμεσα σε τρεις επιλογές τύπου δικτύου καθώς και από την επιλογή Browse τοποθεσία για την αποθήκευσή του Project.

Έπειτα το πρόγραμμα θα ρωτήσει των χρήστη αν θέλει να ρυθμίσει τα Settings του project του και αν επιλέξει Yes τότε θα μεταφερθεί στην φόρμα Project Settings στην οποία θα αναφερθούμε σε επόμενη ενότητα.

3.1.2 Load

Ο χρήστης εδώ καλείται να βρει και να ανοίξει ένα ή δύο αποθηκευμένο project από τη φόρμα αναζήτησης project του προγράμματος Netist.

24
3.1.3 Save as...
Ο χρήστης εδώ καλείται να αποθηκεύσει το τρέχον project του σε μια προαιρετικά καινούρια τοποθεσία με διαφορετικό όνομα.

3.1.4 Save
Με την επιλογή Save σώζει στην ίδια τοποθεσία που βρίσκεται το project όταν αλλαγές έχουν γίνει στα δεδομένα ή στα Settings του project.

3.1.5 Recent Files
Εδώ αποθηκεύονται οι πέντε πιο πρόσφατες τοποθεσίες των project που χρησιμοποιήθηκαν από το πρόγραμμα, για πιο γρήγορη εύρεση τους από το χρήστη και φορτώνουν το εκάστοτε project αν πατηθούν.

3.1.6 Close Project
Κλείνει το τρέχον project.

3.1.7 Exit Netist
Κλείνει το πρόγραμμα αφού κλείσει ένα-ένα τα τρέχον projects.

3.2 Menu ➔ Data
Η επιλογή Data μας δίνει τις επιμέρους επιλογές: Edit Data, Input File και Create Excel Template.

3.2.1 Edit Data
Η επιλογή Edit μας ανοίγει την φόρμα όπου φαίνονται τα δεδομένα που περιέχει το project, δηλαδή τις παρατηρήσεις και τους σταθμούς.

3.2. Φόρμα τροποποίησης δεδομένων του project
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

Στις καρτέλες των σταθμών και των παρατηρήσεων ο χρήστης έχει τις παρακάτω δυνατότητες:

Stations/Spirit Levelling/Trigonometric Levelling: Μπορεί να επέμβει σε όλα τα κελιά.
GNSS Levelling: Μπορεί να επέμβει σε όλα εκτός των κελιών της υψομετρικής διαφοράς του γεωειδούς, όπου το πρόγραμμα την υπολογίζει μέσω των υψομέτρων γεωειδούς από τους σταθμούς.

Σε όλες τις καρτέλες μπορεί να διαγράψει όποια γραμμή θέλει επιλέγοντας την και πατώντας το κουμπί του πληκτρολογίου Delete:

3.3. Εικόνα επιλογής σταθμών

Εδώ είναι επιλεγμένοι οι σταθμοί 45,36 και θα διαγραφούν με το πάτημα του Delete.

Ειδικότερα για όλες τις καρτέλες των παρατηρήσεων ισχύουν τα παρακάτω.

α) Disable Observation

3.4. (Αριστερά) Επιλογή απενεργοποίησης, (Δεξιά) Αποτέλεσμα της επιλογής

Οι παρατηρήσεις απενεργοποιούνται και στιγματίζονται με ένα αστεράκι στο πρώτο τους κελί όπως φαίνεται στην παραπάνω εικόνα και δε συμμετέχουν στην συνόρθωση.
β) Enable Observation

3.5. (Αριστερά) Επιλογή ενεργοποίησης, (Δεξιά) Αποτέλεσμα της επιλογής

Οι παρατηρήσεις ενεργοποιούνται και συμμετέχουν στην συνόρθωση.

γ) Delete Observation

3.6. (Αριστερά) Επιλογή διαγραφής, (Δεξιά) Αποτέλεσμα της επιλογής

Οι παρατηρήσεις διαγράφονται.

Κατά την διαγραφή σταθμού διαγράφονται και όλες οι παρατηρήσεις που σχετίζονται με τον σταθμό που διαγράφηκε. Επίσης με την μετονομασία σταθμού μετονομάζεται και αυτόματα στις παρατηρήσεις!
3.2.2 Input File

Η επιλογή Input File μας δίνει δύο δυνατότητες εισαγωγής δεδομένων στο project μας. Μέσω αρχείου .txt ή μέσω αρχείων Excel τύπου .xls,.xlsx. Με το πέρας της εισαγωγής το πρόγραμμα θα μας ενημερώσει αν ήταν επιτυχής η εισαγωγή ενώ αν υπήρχαν σφάλματα και θέλουμε να τα δούμε μας δείχνει το κατάλληλο ErroLog με τις γραμμές που δεν μπόρεσε να εισάγει. Ένα παράδειγμα φαίνεται στις παρακάτω εικόνες.

3.7. (Πάνω-Αριστερά) Φόρμα επιτυχούς φορτώματος δεδομένων χωρίς σφάλματα,
(Πάνω-Δεξιά) Φόρμα επιτυχούς φορτώματος δεδομένων με σφάλματα,
(Κάτω-Αριστερά) Αποτελέσματα σφαλμάτων από Excel,
(Κάτω-Δεξιά) Αποτελέσματα σφαλμάτων από Text

Για το Excel το Ws(i) (Worksheet) αναφέρεται σε ποια σελίδα του Excel ενώ το Excel line(i) αναφέρεται στη γραμμή της συγκεκριμένης σελίδας όπου εντοπίστηκε το σφάλμα.
Για το Text το GL αναφέρεται σε παρατήρηση GNSS χωροστάθμησης στην γραμμή i του Text αρχείου.

3.2.3 Create Excel Template

Η συγκεκριμένη επιλογή δημιουργεί ένα αρχείο Excel το οποίο περιέχει 4 καρτέλες και τα κατάλληλα κελιά ανάλογα με τα Settings του project για να μπορεί μετά ο χρήστης να τα γεμίσει και να το εισάγει στο πρόγραμμα με την επιλογή Input Files→Excel.

Προσοχή: Όι επιλογές 3.3.2 και 3.3.3 έχουν άμεση σχέση με τα Settings, παραδείγματος χάριν εισαγωγή προβολικών συντεταγμένων με επιλογή Geodetic Coordinates θα αποτύχει καθώς τα φ και λ έχουν περιορισμούς (|φ|<=90 και |λ|<=180).

3.3 Menu → Options

Στην επιλογή Options ο χρήστης μπορεί να επέμβει στα Settings του project, ή να επέμβει στα ελλειψοειδή και στις προσωπικές που χρησιμοποιούνται μέσο των Options.
3.3.1 Project Settings

Πατώντας τη συγκεκριμένη επιλογή Project Settings μας ανοίγει η παρακάτω φόρμα με τα settings τα οποία αναφέρονται σε κάθε project έξωμα, δηλαδή κάθε project έχει τα δικά του settings αποθηκευμένα. Γενικά πάνως θα πρέπει με τη δημιουργία καινούριου project προτού κάνουμε στιχάδηπς να κάνουμε τις αναλογες επιλογές στα settings για το project μας!

Τα settings χωρίζονται σε τέσσερις καρτέλες:

- **General**

![Project Settings](image)

3.8. Φόρμα Settings, καρτέλα General

Σε αυτή την καρτέλα ο χρήστης μπορεί να διαλέξει μεταξύ:

1. Οριζόντιων συντεταγμένων:
 - Γεωδαιτικές ή προβολικές συντεταγμένες
2. Τύπο ύψους για τις τρισδιάστατα δίκτυα:
 - Ορθομετρικά ή ελλειψοειδή υψόμετρα
3. Παραμέτρους για το σύστημα αναφοράς:

 - α) Ελλειψοειδή αναφοράς
 - GRS80
 - None
 - Bessel
 - Clarke 1866
 - Hayford
 - WGS84
 - β) Προβολικά συστήματα
 - EGSA87-TM87
 - HTRS07-TM07
 - TM03 West Zone
 - TM03 Central Zone
 - TM03 East Zone
 - Local

3.9. (Αριστερά) Προεπιλογές ελλειψοειδών, (Δεξιά) Προεπιλογές προβολικών
Τα παραπάνω ελλειψοειδή/προβολικά συστήματα είναι ήδη φορτωμένα στο πρόγραμμα. Όπως θα δούμε παρακάτω ο χρήστης μπορεί να εισάγει και δικά του!

4. Μοντέλο γεωειδούς:
Είτε ένα από τα τρία που είναι ήδη φορτωμένα στο πρόγραμμα ή διαλέγοντας ένα δικό του από την επιλογή Custom. Αναλυτικότερα για τα είδη φορτωμένα μοντέλα γεωειδούς θα δούμε στο παράρτημα.

3.10. Επιλογές μοντέλου γεωειδούς

Επίσης μπορεί να διαλέξει ποια θα είναι ο Default τιμή της τυπικής απόκλισης των υψομέτρων γεωειδούς

3.11. Ρύθμιση ακρίβειας υψομέτρων γεωειδούς

- Data Weighting

3.12. Φόρμα Settings, καρτέλα Data Weighting

Εδώ ο χρήστης διαλέγει ποιο θέλει να είναι το re-scaling για το εκάστοτε είδος παρατηρήσεων καθώς και για το πώς θέλει να δώσει το βάρος στις παρατηρήσεις της γεωμετρικής χωροστάθμησης:
α) Με βάση το μήκος τους και βάση την ακρίβεια του χωροβάτη
β) Με βάση την τυπική τους απόκλιση
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

- Adjustment

3.13. Φόρμα Settings, καρτέλα Adjustment

Ο χρήστης εδώ μπορεί να ορίσει τα εξής:

1. Μέγιστο αριθμό επαναλήψεων της συνόρθωσης (Από 0 έως 9)
2. Convergence criterion σε μέτρα, με προεπιλογή ενός χιλιοστού
3. Αν θέλει στα τελικά αποτελέσματα οι τελικοί πίνακες συμεταβλητήτων να είναι πολλαπλασιασμένοι με την α-posteriori
4. Το α για τον ολικό έλεγχο (Global F-test) ο οποίος είναι ο διπλός ολικός έλεγχος
5. Το α για την σάρωση δεδομένων
6. Το επίπεδο σημαντικότητας για τις ελλείψεις σφάλματος

- Other Options

3.14. Φόρμα Settings, καρτέλα Other Parameters
Εδώ ο χρήστης καλείται να επιλέξει το παραμετρικό μοντέλο που θέλει να χρησιμοποιήσει για μικτά δίκτυα με συμμετοχή GNSS χωροστάθμησης, για την απορρόφηση θορύβου από τις παραμέτρους αυτές ή και να μη χρησιμοποιήσει κανένα μοντέλο.

3.15. Επιλογές παραμετρικού μοντέλου για μικτό δίκτυο με GNSS χωροστάθμηση

Επίσης μπορεί να επιλέξει αν θέλει να υπολογιστούν παράμετροι μετασχηματισμού στην περίπτωση τρισδιάστατου δικτύου μεταξύ του συστήματος αναφοράς και του τοπικού συστήματος.
3.3.2 Map Projections Library

3.16. (Αριστερά) Φόρμα με τις προβολές, (Δεξιά) Επιλογές δεξί κλικ σε κάποια προβολή

Ο χρήστης έχει τη δυνατότητα να φτιάξει δικιά του προβολή, να τροποποιήσει κάποια που έχει δημιουργήσει ο ίδιος ή να την σβήσει.

Πατώντας την επιλογή Add New ο χρήστης καλείται να επιλέξει τη προβολή θέλει να φτιάξει μεταξύ των: Traverse Mercator, Stereographic, Azimuthal Equidistant, Lambert Single Parallel και Lambert Double Parallel. Έπειτα ρυθμίζει τις παραμέτρους όπως τις θέλει ο ίδιος καθώς και το όνομα.

3.17. (Αριστερά) Επιλογή τύπου προβολής, (Δεξιά) Τροποποίηση παραμέτρων καινούριας προβολής

Οι built In δεν δέχονται τροποποιήσεις ούτε μπορούν να διαγραφούν!
3.3.3 Reference Ellipsoids Library

![Image of Reference Ellipsoids Library]

3.18. Φόρμα με τα ελλειψοειδή

Ο χρήστης εδώ μπορεί να δημιουργήσει ένα καινούριο ελλειψοειδές ορίζοντας τον κύριο άξονα του καθώς και μία από τις τρεις δευτερευόντων παραμέτρων όπως φαίνεται στην εικόνα.

![Image of Ellipsoid Editor]

3.19. Φόρμα τροποποίησης παραμέτρων καινούριου ελλειψοειδούς

Τα built-in ελλειψοειδή δεν δέχονται τροποποιήσεις ούτε μπορούν να διαγραφούν!
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

3.4 Menu ➔ Compute

3.4.1 Network Adjustment

Η επιλογή Adjust μας δίνει δύο κύριες επιλογές όπως φαίνεται και στην εικόνα:

1. Επιλογή τύπου δεσμεύσεων μεταξύ των επιλογών:
 a) Δεσμεύσεις με βάση γνωστές συντεταγμένες
 b) Εσωτερικές δεσμεύσεις
 γ) Μερικές εσωτερικές δεσμεύσεις
2. Εξαγωγή των κανονικών εξισώσεων σε μορφή Text ή Excel

3.20. Επιλογές μέσω της επιλογής Compute

- Δεσμεύσεις με βάση γνωστές συντεταγμένες

3.21. (Αριστερά) Φόρμα επιλογής σταθμών με δεσμεύσεις με βάση γνωστές συντεταγμένες, (Δεξιά) Επιλογές Fixed, Weighted

Ο χρήστης βλέπει μία λίστα των γνωστών σταθμών που έχει ορίσει στα δεδομένα του (Reference) και την τυπική τους απόκλιση. Στο πίνακα δεξιά φαίνεται η αδυναμία βαθμού του δικτύου καθώς και από κάτω οι ελάχιστες δεσμεύσεις που χρειάζονται για να λυθεί το σύστημα.

Με επιλογή ενός υψομέτρου μόνο έχουμε αυτόματα ελάχιστες δεσμεύσεις ενώ με δύο ή και παραπάνω πλεονάζουσες δεσμεύσεις.

Η επιλογή δέσμευσης γίνεται κάνοντας αριστερό click στο κελί της συντεταγμένης του σταθμού που θέλουμε. Γίνεται Fixed ή Weighted.

Με τον όρο Fixed εννοουμε ότι ο σταθμός θα είναι απολύτως γνωστός με πολύ μικρή τυπική απόκλιση(10^-6 m) ενώ με τον όρο Weighted λαμβάνεται υπόψιν στην συνόρθωση η τυπική απόκλιση η οποία έχει δοθεί για την εκάστοτε συντεταγμένη (πχ. Στην εικόνα μας για το υψόμετρο του σταθμού 4017 είναι 0.008).
Εσωτερικές δεσμεύσεις

3.22. (Αριστερά) Φόρμα εσωτερικών (πλήρης) δεσμεύσεων, (Δεξιά) πλεονάζουσες (πλήρης) εσωτερικές δεσμεύσεις

Στις εσωτερικές δεσμεύσεις το δίκτυο λύνεται ως ελεύθερο με όλους τους σταθμούς όπως αναφέρεται στην ενότητα των δεσμεύσεων 2.2. Στο πίνακα δεξιά φαίνεται η αδυναμία βαθμού του δικτύου καθώς και από κάτω οι ελάχιστες δεσμεύσεις που χρειάζονται για να λυθεί το σύστημα.

Με την ενεργοποίηση της επιλογής scale εισάγονται οι πλεονάζουσες «πλήρης» εσωτερικές δεσμεύσεις.

Μερικές εσωτερικές δεσμεύσεις

3.23. (Αριστερά) Φόρμα εσωτερικών (μερικών) δεσμεύσεων, (Δεξιά) πλεονάζουσες (μερικές) εσωτερικές δεσμεύσεις

Ο χρήστης βλέπει μία λίστα των γνωστών σταθμών που έχει ορίσει στα δεδομένα του (Reference. Στο πίνακα δεξιά φαίνεται η αδυναμία βαθμού του δικτύου καθώς και από κάτω οι ελάχιστες δεσμεύσεις που χρειάζονται για να λυθεί το σύστημα.

Κάνοντας αριστερό κλικ σε όποιο σταθμό θέλει στην ουσία δεσμεύει στην περίπτωση των κατακόρυφων δικτύων το υψόμετρο του σταθμού.

Αν ενεργοποιήσει την επιλογή scale εισάγονται οι πλεονάζουσες εσωτερικές-μερικές δεσμεύσεις και στην περίπτωση των κατακόρυφων δικτύων χρειάζονται δύο τουλάχιστον σταθμοί (2 Selected).
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

- Εξαγωγή των κανονικών εξισώσεων

Η εξαγωγή των κανονικών εξισώσεων γίνεται είτε σε μορφή Text είτε σε μορφή Excel. Από το χρήστη θα ζητηθεί η τοποθεσία και η ονομασία του αρχείου που θέλει να εξάγει. Οι κανονικές εξισώσεις είναι ο πίνακας \(N \) και το διάνυσμα \(u \). Ένα παράδειγμα φαίνεται στις παρακάτω εικόνες για Text και Excel αντίστοιχα.

3.24. Εξαγωγή κανονικών εξισώσεων σε αρχείο Text

3.25. Εξαγωγή κανονικών εξισώσεων σε αρχείο Excel, (Αριστερά) Διάνυσμα \(u \), (Δεξιά) Κάτω τριγωνικός πίνακας \(N \)
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

3.4.2 Determination of approximate coordinates

Με αυτή την επιλογή υπολογίζονται προσεγγιστικές συντεταγμένες για κάθε σταθμό του δικτύου. Για τα κατακόρυφα δίκτυα χρειάζεται τουλάχιστον ένας γνωστός σταθμός με γνωστό υψόμετρο για τον υπολογισμό των υπολοίπων. Το πρόγραμμα προσπαθεί να βρει για κάθε σταθμό προσεγγιστικό υψόμετρο μέσω των παρατηρήσεων, όμως αν κάποιος σταθμός δεν συνδέεται με κάποια παρατήρηση τότε το πρόγραμμα δεν μπορεί να υπολογίσει για αυτόν τιμή και το χαρακτηρίζει με μία (-).

3.26. Φόρμα αποτελεσμάτων υπολογισμού προσεγγιστικών υψομέτρων

Σε αυτό το παράδειγμα βλέπουμε πως ο σταθμός 40100 δεν μπορούσε να υπολογισθεί καθώς δεν συνδεόταν με κάποια παρατήρηση.

Ο χρήστης βλέποντας τις υπολογισμένες τιμές και τις τιμές που είχαν πριν οι σταθμοί καλείται να «σώσει» ή να απορρίψει τις υπολογισμένες τιμές.

Αν πατήσει Save τότε οι υπολογισμένες τιμές αντικαθιστούν τις προηγούμενες αλλιώς αν πατήσει Cancel οι τιμές δεν αλλάζουν και παραμένουν οι προηγούμενες.
3.4.3 Variance Component Estimation

Όπως και στον υπολογισμό προσεγγιστικών συντεταγμένων ο χρήστης καλείται είτε να σώσει τις υπολογισμένες τιμές ή να τις απορρίψει. Αν πατήσει Save οι τιμές πηγαίνουν και αντικαθιστούν τις αντίστοιχες προηγούμενες στα Settings → Data Weighting → A-priori Variances.

3.4.4 Geoid Height Interpolation

Αναλόγως με το επιλεγμένο μοντέλο γεωειδούς γίνεται διγραμμική παρεμβολή με βάση τα φλ του εκάστοτε σταθμού και υπολογίζονται τα υψόμετρα του γεωειδούς για τον κάθε σταθμό. Ο χρήστης καλείται να αποθηκεύσει τις υπολογισμένες τιμές ή να τις απορρίψει.
3.5 Adjustment results

Τα αποτελέσματα μιας συνόρθωσης δίνονται έπειτα από μία συνόρθωση με οποιεσδήποτε δεσμεύσεις έχουμε επιλέξει να κάνουμε.

3.5.1 Μπάρα εργαλείων

Στην μπάρα εργαλείων των αποτελεσμάτων της συνόρθωσης έχουμε τις επιλογές Export, Copy Selected και Station Accuracy.

α) Με την επιλογή Print Summary εκτυπώνουμε την καρτέλα Summary των αποτελεσμάτων της συνόρθωσης.

β) Με τις επιλογές Inverse Matrix Text και Inverse Matrix Excel εξάγουμε τον πίνακα των συμεταβλητήτων των συνορθωμένων υψομέτρων του δικτύου μας σε μορφή είτε Text, είτε Excel. Ένα παράδειγμα φαίνεται στις παρακάτω εικόνες για κάθε μορφή:

3.30. Εξαγωγή του κάτω τριγωνικού πίνακα Cx σε αρχείο Text
3.31. Εξαγωγή του κάτω τριγωνικού πίνακα C_x σε αρχείο Excel

γ) Με την επιλογή Copy Selected ο χρήστης μπορεί να αντιγράψει ότι έχει διαλέξει από την καρτέλα Adjusted Stations ή την Adjusted Observations ή την Observations Statistics. Ο χρήστης μπορεί επίσης να κάνει δεξί κλικ→Copy ή Ctrl+C σε ότι έχει επιλέξει στις προαναφερόμενες καρτέλες για αντιγραφή.

3.32. Επιλογή δεξί κλικ στην καρτέλα Observations Statistics

ε) Οι επιλογές Station Accuracy θα αναφερθούν στην ενότητα 2.6.3 Adjusted Stations.
3.5.2 Summary

Η καρτέλα αυτή μας δίνει γενικές πληροφορίες για:
α) Το project μας
β) Τις δεσμεύσεις που χρησιμοποιήθηκαν
γ) Τη συνόρθωση
δ) Τους στατιστικούς ελέγχους
ε) Τις ομάδες παρατηρήσεων
ζ) Τις αδιάφορες παραμέτρους (αν υπάρχουν)

όπως φαίνεται στην παρακάτω εικόνα:

![Netist Adjustment Summary](image)

3.33. Φόρμα αποτελεσμάτων της συνόρθωσης
3.5.3 Adjusted Stations

Στην καρτέλα αυτή βλέπουμε τις πληροφορίες για τα συνορθωμένα υψόμετρα μας. Ο χρήστης μπορεί να διαλέξει ποια τυπική απόκλιση θέλει να βλέπει από την επιλογή Station Accuracy στην μπάρα με τα εργαλεία μεταξύ των τριών Data/Datum/Full Noise.

3.5.4 Adjusted Observations

Στην καρτέλα αυτή βλέπουμε τις πληροφορίες για τις συνορθωμένες παρατηρήσεις μας. Κάνεται κατηγοριοποίηση των παρατηρήσεων για πιο γρήγορη και εύκολη διαχείριση τους. Ο χρήστης επιλέγει από τις επιμέρους καρτέλες όποια τον ενδιαφέρει. Με τον όρο Ortho Heig ht s εννοούμε τις ψευδοπαρατηρήσεις υψομέτρων που εισάγονται όπως αναφέραμε όταν ο χρήστης χρησιμοποιεί δεσμεύσεις συντεταγμένων με βάρος.
ΚΕΦΑΛΑΙΟ 3: ΕΠΙΛΟΓΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

3.36. Καρτέλα Adjusted Observations της φόρμας αποτελεσμάτων της συνόρθωσης, υποκαρτέλα ψευδοπαρατηρήσεων (δεσμεύσεων υψομέτρων)

3.3.5 Observations Statistics

Στην καρτέλα αυτή ο χρήστης ενημερώνεται σχετικά με τα στατιστικά στοιχεία των παρατηρήσεων για κάθε τύπο παρατήρησης. Οσο αφορά το χρωματισμό στα Redundancy είναι ένας δείκτης για το πόσο ελέγχεται η συγκεκριμένη παρατήρηση στην συνόρθωσή μας (Κόκκινο-Πορτοκαλί-Πράσινο). Για το εξωτερικά ομαλοποιημένο σφάλμα ο χρωματισμός σημαίνει αν περνάει η παρατήρηση το T-Test (Με πράσινο περνάει με κόκκινο δεν περνάει). Στην καρτέλα αυτή ο χρήστης ενημερώνεται σχετικά με τα στατιστικά στοιχεία των παρατηρήσεων για κάθε τύπο παρατήρησης. Οσο αφορά το χρωματισμό στα Redundancy είναι ένας δείκτης για το πόσο ελέγχεται η συγκεκριμένη παρατήρηση στην συνόρθωσή μας (Κόκκινο-Πορτοκαλί-Πράσινο). Για το εξωτερικά ομαλοποιημένο σφάλμα ο χρωματισμός σημαίνει αν περνάει η παρατήρηση το T-Test (Με πράσινο περνάει με κόκκινο δεν περνάει). Ο συνδυασμός αυτών των δύο μπορεί να αποτελέσει καλύτερο κριτήριο για τον χρήστη, για το στατιστικά στοιχεία των παρατηρήσεων για κάθε τύπο παρατήρησης. Ο συνδυασμός αυτών των δύο μπορεί να αποτελέσει καλύτερο κριτήριο για τον χρήστη, για το αν η συγκεκριμένη παρατήρηση περιέχει χονδροειδές ή συστηματικό σφάλμα(της, μια παρατήρηση με μεγάλο Redundancy σημαίνει ότι ελέγχεται πολύ από τις υπόλοιπες παρατηρήσεις μας και αν ο δείκτης του εξωτερικού ομαλοποιημένου σφάλματος είναι κόκκινος τότε είναι πολύ πιθανό να είναι περιέχει σφάλμα!).

3.37. Καρτέλα Observations Statistics της φόρμας αποτελεσμάτων της συνόρθωσης, υποκαρτέλα GNSS χωροστάθμησης

Στην παραπάνω εικόνα η παρατήρηση 4047-4086 είχε πληκτρολογηθεί λάθος και μας την υποδεικνύει το πρόγραμμα μέσω του κόκκινου χρώματος στο εξωτερικά ομαλοποιημένο σφάλμα της.
3.5.6 Graphs

Η καρτέλα αυτή περιέχει κάποια απλά αλλά και κάποια πιο πολύπλοκα συνδυαστικά γραφήματα.

α) Γράφημα συνορθωμένων υψομέτρων των σταθμών

β) Γράφημα αριθμητικού αθροίσματος τυπικής απόκλισης, λόγω Datum και Data Noise, συνορθωμένων υψομέτρων των σταθμών. Εδώ να τονίσουμε ότι η «ολική» τυπική απόκλιση του συνορθωμένου υψομέτρου για κάθε σταθμό είναι η ρίζα του αθροίσματος των τετραγώνων των επιμέρους Datum και Data τυπικών αποκλίσεων και άρα δεν συμπίπτει με το απλό αριθμητικό άθροισμα που φαίνεται στο γράφημα!
γ) Γράφημα το οποίο δείχνει το ποσοστό επιρροής της τελικής τιμής της τυπικής απόκλισης των συνορθωμένων υψομέτρων των σταθμών από το Datum και Data Noise αντίστοιχα.

3.40. Γράφημα % της συνολικής τιμής της τυπικής απόκλισης των συνορθωμένων υψομέτρων των σταθμών
d) Γράφημα τυπικής απόκλισης των συνορθωμένων παρατηρήσεων

3.41. Γράφημα τυπικής απόκλισης των συνορθωμένων παρατηρήσεων
e) Γράφημα τυπικής απόκλισης των σφαλμάτων των παρατηρήσεων

![Graph of typical deviation of observation errors](image)

3.42. Γράφημα τυπικής απόκλισης των σφαλμάτων των παρατηρήσεων

ζ) Γράφημα τυπικής απόκλισης σε σχέση με το Redundancy των συνορθωμένων παρατηρήσεων

![Graph of typical deviation compared to Redundancy](image)

3.43. Γράφημα τυπικής απόκλισης σε σχέση με το Redundancy των συνορθωμένων παρατηρήσεων

Στον άξονα x αναφέρεται η τιμή της τυπικής απόκλισης της συνορθωμένης παρατήρησης και από δίπλα σε ποια παρατήρηση ανήκει καθώς και ο τύπος της παρατήρησης.
η) Γράφημα ppm για τις παρατηρήσεις γεωμετρικής χωροστάθμησης όταν χρησιμοποιούνται αποστάσεις για την τυπική απόκλιση των παρατηρήσεων

3.44. Γράφημα ppm

3.6 Menu ➔ Windows

Σε αυτή την επιλογή ο χρήστης έχει κάποιες δυνατότητες προβολής, όταν χρησιμοποιεί περισσότερα του ενός project για καλύτερη διαχείρισή τους. Οι επιλογές αυτές λειτουργούν για όλα τα μη ελαχιστοποιημένα τρέχον Projects.

3.45. Επιλογές της επιλογής Window

α) Cascade: Με αυτή την επιλογή τα τρέχον projects μπαίνουν σε διάταξη το ένα πίσω από το άλλο:
β) Tile Horizontal: Τα project τοποθετούνται το ένα κάτω από το άλλο:

3.47. Επιλογή Tile Horizontal

γ) Tile Vertical: Τα project τοποθετούνται το ένα δίπλα από το άλλο:

3.48. Επιλογή Tile Vertical
3.7 Μπάρα εργαλείων προγράμματος
Η μπάρα εργαλείων αποτελεί συντομεύσεις των επιλογών του Menu που δίνονται στο χρήστη για πιο γρήγορη επεξεργασία του project του.

3.49. Μπάρα εργαλείων Netist

- Νέο project
- Φόρτωμα project
- Αποθήκευση project

- Εμφάνιση δεδομένων
- Settings
- Συνόρθωση

- Επιλογή δεσμεύσεων για την επιλογή συνόρθωσης από τη μπάρα εργαλείων.

3.8 Απεικόνιση δικτύου
Το κάθε project έχει τη δική του απεικόνιση δικτύου με βάση τους σταθμούς και τις παρατηρήσεις που περιέχει.

3.50. Απεικόνιση δικτύου
3.8.1 Γενικές παρατηρήσεις

Όσοι σταθμοί έχουν χαρακτηριστεί ως Reference στην απεικόνιση φαίνονται με τριγωνάκι ενώ οι New είναι κύκλοι. Με κρατημένο το δεξί κλικ κάνουμε panning.

Οι παρατηρήσεις γεωμετρικής χωροστάθμησης έχουν πράσινο χρώμα.
Οι παρατηρήσεις τριγωνωμετρικής χωροστάθμησης ανοιχτό μπλε χρώμα.
Οι παρατηρήσεις GNSS-χωροστάθμησης είναι με κόκκινο χρώμα.

Κάτω αριστερά φαίνεται η κλίμακα, ο Βορράς καθώς και η κλίμακα για τις ελλείψεις σφάλματος στα οριζόντια δίκτυα και στα τρισδιάστατα.

![Klaima me panning](image)

3.51. Βορράς, κλίμακα απεικόνισης δικτύου και κλίμακα ελλείψεων

Επίσης κάτω από τις κλίμακες αναγράφονται οι συντεταγμένες με βάση τη θέση του ποντικιού πάνω στην απεικόνιση του δικτύου, ανάλογα με το τι οριζόντιες συντεταγμένες έχουμε επιλέξει στα Settings→General→Horizontal Coordinates.

Lat: 39°35′6.1966″ Lng: 22°45′42.2089″ σε φ.λ
Eastind: 390678.4 Northing: 2377965 σε Easting, Northing

3.52. Συντεταγμένες θέσης ποντικιού στην απεικόνιση του δικτύου

3.8.2 Μπάρα εργαλείων

Η μπάρα εργαλείων για την απεικόνιση του δικτύου βρίσκεται αριστερά όπως φαίνεται στην παραπάνω εικόνα.

![Zoom extents](image)

→ Zoom extents
dpgp

→ Options

Πατώντας τα Options μεταφερόμαστε στην παρακάτω φόρμα:

![Forma roudimou apieikonihs diktwou](image)

3.53. Φόρμα ρυθμίσεων απεικόνισης δικτύου

Εδώ μπορούμε να ρυθμίσουμε αν θέλουμε να εμφανίζονται οι παρατηρήσεις, οι απόλυτες ελλείψεις και οι σχετικές ελλείψεις σφάλματος στο σχέδιο που εμφανίζεται για το δίκτυο μας. Επίσης μπορούμε να ρυθμίσουμε την κλίμακα των ελλείψεων.
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

Κεφάλαιο 4ο: Οδηγίες χρήσης και παράδειγμα

4.1 Οδηγίες χρήσης του προγράμματος για κατακόρυφα δίκτυα

- Με την δημιουργία ενός καινούριου project ο χρήστης καλό θα είναι να βάζει τις κατάλληλες επιλογές στα Settings που χρειάζεται προτού ξεκινήσει την εισαγωγή των δεδομένων του.
- Αν βάζει παρατηρήσεις γεωμετρικής χωροστάθμησης να ρυθμίζει το βάρος με το οποίο θα τις εισάγει και την a-priori μεταβλητότητα για τις παρατηρήσεις γεωμετρικής χωροστάθμησης.
- Αν βάζει παρατηρήσεις τριγωνομετρικής χωροστάθμησης να ρυθμίζει την a-priori μεταβλητότητα για τις παρατηρήσεις τριγωνομετρικής χωροστάθμησης.
- Αν βάζει παρατηρήσεις GNSS χωροστάθμησης να ρυθμίζει πιο παραμετρικό μοντέλο θέλει να χρησιμοποιηθεί και την a-priori μεταβλητότητα για τις παρατηρήσεις GNSS χωροστάθμησης.

- Έπειτα μπορεί να πληκτρολογήσει τα δεδομένα του ή να τα εισάγει από κάποιο αρχείο Text ή Excel.
- Αν επιλέξει να τα εισάγει από text αρχείο στο παράρτημα A υπάρχουν όλες οι πληροφορίες που χρειάζεται σχετικά με την δομή που πρέπει να έχει το αρχείο.
- Αν επιλέξει να τα εισάγει από Excel καλό θα ήταν να δημιουργήσει ένα Template μέσω του προγράμματος για το project του για να έχει σίγουρα σωστή μορφοποίηση για τα δεδομένα που θέλει να εισάγει.
- Σε αυτό το σημείο όπου θα έχει εισάγει τα δεδομένα του καλό θα είναι να σώζει το project.
- Αν έχει παρατηρήσεις GNSS χωροστάθμησης να βεβαιωθεί προτού κάνει συνόρθωση αν έχει υψόμετρα γεωειδούς στους συμμετέχοντες σταθμούς. Αν δεν έχει τότε μπορεί να υπολογίσει μέσω του Compute→Geoid Height Interpolation με το ανάλογο μοντέλο γεωειδούς.
- Να ρυθμίσει τις στατιστικές παραμέτρους για τον ολικό έλεγχο και την σάρωση δεδομένων και να προβεί στην συνόρθωση.
- Επίσης κάποιες γενικές παρατηρήσεις για τον τρόπο που λειτουργούν κάποιες επιλογές του προγράμματος.

- Σχετικά με την Default τιμή της απόκλισης του υψομέτρου γεωειδούς: Στην καρτέλα των δεδομένων GNSS Levelling μόνο όταν εισάγουμε απευθείας στο πρόγραμμα μία καινούρια GNSS παρατήρηση ή από κάποιο αρχείο και δεν δώσουμε τιμή στη στήλη Sd του Geoid Height, η τιμή στη στήλη θα μπαίνει αναλόγως με την Default τιμή που έχουμε ορίσει στα Settings! (πχ. όταν η Default τιμή της τυπικής απόκλισης του υψομέτρου γεωειδούς είναι 0.5m τότε η τυπική απόκλιση της διαφοράς υψομέτρου γεωειδούς όταν εισάγουμε μια καινούρια GNSS παρατήρηση στις περιπτώσεις που αναφέραμε πιο πριν θα είναι σύμφωνα με το νόμο μετάδοσης συμμεταβλητοτήτων \(\sigma_{ΔN} = \sqrt{2\sigma_{Default}} \)).
- Όταν ο χρήστης αλλάζει από Geodetic σε Projected Coordinates το πρόγραμμα μετασχηματίζει τις συντεταγμένες στην επιλεγμένη προβολή σύμφωνα με το επιλεγμένο ελλειψοειδές και το αντίστροφο, δηλαδή όταν αλλάζει από Projected σε Geodetic Coordinates. Άμεση αλλαγή από μία προβολή σε άλλη δεν μετασχηματίζει τις συντεταγμένες προς το παρόν.
- Όταν επιλεχθεί σαν Reference Ellipsoid η επιλογή ’None’ οι μετασχηματισμοί που αναφέρθηκαν στην προηγούμενη παρατήρηση δεν πραγματοποιούνται.
- Κατά την διαγραφή σταθμού διαγράφονται και όλες οι παρατηρήσεις που σχετίζονται με τον σταθμό που διαγράφηκε. Επίσης με την μετονομασία σταθμού μετονομάζεται και αυτόματα στις παρατηρήσεις.
4.2 Παράδειγμα μικτού κατακόρυφου δικτύου

Σε αυτό το παράδειγμα τα δεδομένα είναι μετρήσεις φοιτητών στο πλαίσιο του μαθήματος «Ασκήσεις Υπαίθρου» στην περιοχή του Μεταλλικού.

Προτού εισάγουμε τα δεδομένα μας ρυθμίζουμε τα Settings!

4.1. Ρύθμιση Settings πριν την εισαγωγή δεδομένων

Θα χρησιμοποιήσουμε προβολικές συντεταγμένες με προβολή ΕΓΣΑ87-TM87 και για τις παρατηρήσεις γεωμετρικής χωροστάθμησης θα δώσουμε αποστάσεις για βάρος και θα χρησιμοποιήσουμε ένα εκατοστό ανά ρίζα χιλιόμετρο ως τυπική απόκλιση χωροβάτη.

Αρχεία Input είτε μέσο text είτε μέσο Excel:

4.2. Αρχείο εισαγωγής δεδομένων *.txt
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.3. Αρχείο εισαγωγής δεδομένων *.xls, *.xlsx

Ανάλογα με την επιλεγμένη καρτέλα που όπως βλέπουμε στην παραπάνω εικόνα βρίσκονται στην περιοχή με το κόκκινο τετραγωνάκι:

Excel Stations ➔

Excel Spirit Lev. ➔

Excel Trig. Lev. ➔
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

Excel GNSS Lev. →

Για το Repere (R) οι οριζοντιογραφικές συντεταγμένες είναι τυχαίες, απλώς χρειάζονται για την καλύτερη απεικόνιση του δικτύου. Για τις περιπτώσεις i και ii στις συνορθώσεις θα χρησιμοποιηθεί ως παραμετρικό μοντέλο οι δύο συστηματικές κλίσεις και για α-priori μεταβλητότητες μονάδες ενώ όταν γίνεται εκτίμηση συνιστωσών μεταβλητότητας δεν θα χρησιμοποιείται παραμετρικό μοντέλο:

4.4. (Αριστερά) Επιλογή παραμετρικού μοντέλου, (Δεξιά) Επιλογές a-priori μεταβλητότητας για κάθε ομάδα παρατήρησης

i. Επίλυση με εσωτερικές δεσμεύσεις:

Σε αυτή την περίπτωση χρειαζόμαστε οπωσδήποτε προσεγγιστικές συντεταγμένες για όλους τους σταθμούς μας. Οπότε:

4.5. Επιλογή υπολογισμού προσεγγιστικών συντεταγμένων

4.6. Φόρμα αποτελεσμάτων υπολογισμού προσεγγιστικών συντεταγμένων
Το Repere καθώς το είχαμε ορίσει ως γνωστό σημείο-υψόμετρο (Reference) κράτησε το υψόμετρό του που του είχαμε δώσει και μέσω των παρατηρήσεων μας υπολογίστηκαν προσεγγιστικά υψόμετρα για όλους τους σταθμούς. Πατάμε Save και προχωράμε στη συνόρθωση:

4.7. Επιλογή συνόρθωσης εσωτερικών δεσμεύσεων (πλήρης) :
Αριστερά μέσο κεντρικού μενού, Δεξιά μέσο μπάρας εργαλείων προγράμματος.

Επειτά επιλέγουμε να κάνουμε κλασσικές εσωτερικές ή πλεονάζουσες εσωτερικές με απενεργοποιημένη, ενεργοποιημένη αντίστοιχα την επιλογή Scale:

4.8. (Αριστερά) Ελάχιστες εσωτερικές πλήρης, (Δεξιά) Πλεονάζουσες εσωτερικές πλήρης.
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.9. (Αριστερά) Αποτελέσματα συνόρθωσης με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Αποτελέσματα συνόρθωσης με πλεονάζουσες εσωτερικές πλήρης

Με μια πρώτη ματιά βλέπουμε πως το συνολικό άθροισμα των σφαλμάτων είναι μεγαλύτερο στην περίπτωση των πλεονάζουσων δεσμεύσεων και οι παράμετροι κλίσης ως προς το χωροσταθμικό σύστημα αναφοράς του δικτύου είναι λίγο μεγαλύτεροι. Επίσης οι παρατηρήσεις τριγωνομετρικής χωροστάθμησης είναι πολύ χειρότερες από αυτές της γεωμετρικής και οι παρατηρήσεις GNSS είναι πολύ καλύτερες από τις υπόλοιπες 2 κατηγορίες παρατηρήσεων.
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.10. (Αριστερά) Καρτέλα Adjusted Stations με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Καρτέλα Adjusted Stations με πλεονάζουσες εσωτερικές πλήρης

Στους σταθμούς παρατηρείται μια διαφορά μεταξύ των συνορθωμένων υψομέτρων +3χιλιοστών. Παρόμοιες διαφορές και λίγο μεγαλύτερες παρατηρούνται και στις συνορθωμένες παρατηρήσεις +6χιλιοστά:

4.11. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling με ελάχιστες εσωτερικές πλήρης

4.12. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling με πλεονάζουσες εσωτερικές πλήρης
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

Κάνοντας βέλτιστη εκτίμηση συμεταβλητοτήτων για καλύτερο βάρος των παρατηρήσεων μας μέσα στη συνόρθωση (χωρίς τη συμμετοχή παραμετρικού μοντέλου):

4.13. (Αριστερά) Επιλογή υπολογισμού εκτίμησης μεταβλητοτήτων, (Δεξιά) Αποτέλεσμα του υπολογισμού

Πατώντας Save και συνορθώνοντας πάλι με εσωτερικές και πλεονάζουσες εσωτερικές:

4.14. (Αριστερά) Αποτελέσματα συνόρθωσης με ελάχιστες εσωτερικές πλήρης, (Δεξιά) Αποτελέσματα συνόρθωσης με πλεονάζουσες εσωτερικές πλήρης (VCE)
Πάλι τα σφάλματα είναι μεγαλύτερα στην περίπτωση των πλεονάζουσών εσωτερικών, όμως αυτή τη φορά έχοντας βάλει τα βέλτιστα βάρη στις παρατηρήσεις μας τα σφάλματα κάθε τύπου παρατήρησης δεν διαφέρουν ιδιαίτερα μεταξύ τους καθώς και το σύνολο κάθε ομάδας παρατήρησης είναι σχεδόν ίδιο. Επίσης ο ολικός έλεγχος αυτή τη φορά όπως είναι λογικό περνάει.

Επίσης ο ολικός έλεγχος αυτή τη φορά όπως είναι λογικό περνάει.

4.15. (Αριστερά) Καρτέλα Adjusted Stations με ελάχιστες εσωτερικές πλήρη, (Δεξία) Καρτέλα Adjusted Stations με πλεονάζουσες εσωτερικές πλήρης (VcE)

Στους σταθμούς τα συνορθωμένα υψόμετρα είναι πολύ πιο κοντά από πριν με διαφορά +1χιλιοστό μόνο. Παρόμοια εικόνα έχουμε και στις συνορθωμένες παρατηρήσεις με διαφορές +2χιλιοστά αυτή τη φορά.

4.16. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling με ελάχιστες εσωτερικές πλήρης (VcE)

4.17. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling με πλεονάζουσες εσωτερικές πλήρης (VcE)

Παρόμοια αποτελέσματα έχουμε και στην περίπτωση των μερικών εσωτερικών και μερικών πλεονάζουσών εσωτερικών.
ii. Επίλυση με δεσμεύσεις υψομέτρων

Σε αυτή την περίπτωση δεν χρειαζόμαστε προσεγγιστικές συντεταγμένες για τους υπόλοιπους σταθμούς οπότε προχωρούμε απευθείας στην συνόρθωση:

4.18. Επιλογή συνόρθωσης με βάση γνωστές συντεταγμένες:
Αριστερά μέσο κεντρικού μενού, Δεξιά μέσο μπάρας εργαλείων προγράμματος

Μπορούμε να κάνουμε είτε πλεονάζουσες είτε ελάχιστες δεσμεύσεις. Στην περίπτωση μας θα θεωρήσουμε και το 16 ως γνωστό υψόμετρο για να λύσουμε με πλεονάζουσες δεσμεύσεις:

4.19. Φόρμα τροποποίησης δεδομένων

4.20. (Αριστερά) α)Πλεονάζουσες με απόλυτα γνωστό το υψόμετρο του Repere και το υψόμετρο του σταθμού 16,
(Δεξιά) β)Πλεονάζουσες με γνωστά τα ίδια υψόμετρα με τυπική απόκλιση ενός εκατοστού για το Repere και πέντε εκατοστών για το σταθμό 16:

Θα μπορούσε να γίνει και συνδυασμός Fixed και Weighted υψομέτρων των σταθμών.
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.21. (Αριστερά) Αποτελέσματα: α) πλεονάζουσες με απόλυτα γνωστό το υψόμετρο του Repere και το υψόμετρο του σταθμού 16, (Δεξιά) Αποτελέσματα: β) πλεονάζουσες με γνωστά τα ίδια υψόμετρα με τυπική απόκλιση ενός εκατοστού για το Repere και πέντε εκατοστών για το σταθμό 16.

Όπως και στο 1ο παράδειγμα ο ολικός έλεγχος δεν περνάει καθώς πάλι παρατηρείται μεγάλη διαφορά στην ακρίβεια των παρατηρήσεων τριγωνομετρικής χωροστάθμησης με γεωμετρικής και GNSS χωροστάθμησης. Στην περίπτωση των πλεοναζουσών με βάρη εμφανίζεται ο όρος Known Coordinates που αναφέρεται στις «ψευδοπαρατηρήσεις» υψόμετρων. Δεν υπάρχει όπως θα δούμε διαφορά στα συνορθωμένα υψόμετρα, παρατηρήσεις όμως υπάρχει διαφορά στα στατιστικά τους στοιχεία!
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.22. (Αριστερά) Καρτέλα Adjusted Stations περίπτωση α), (Δεξιά) Καρτέλα Adjusted Stations περίπτωση β)

4.23. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling περίπτωση α)

4.24. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling περίπτωση β)
Κάνοντας βέλτιστη εκτίμηση συμεταβλητοτήτων για καλύτερο βάρος των παρατηρήσεων μας μέσα στη συνόρθωση (χωρίς τη συμμετοχή παραμετρικού μοντέλου):

4.25. (Αριστερά) Επιλογή υπολογισμού εκτίμησης μεταβλητοτήτων, (Δεξιά) Αποτελέσματα του υπολογισμού

Πατώντας Save και προχωρώντας όπως και πριν σε 2 συνορθώσεις:

4.26. (Αριστερά) Αποτελέσματα συνόρθωσης περίπτωση α), (Δεξιά) Αποτελέσματα συνόρθωσης περίπτωση β) (VcE)
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

Οι παρατηρήσεις παίρνουν καλύτερο βάρος, ο ολικός έλεγχος περνάει και όπως θα δούμε υπάρχουν διαφορές στα συνορθωμένα υψόμετρα και στις συνορθωμένες παρατηρήσεις:

4.27. (Αριστερά) Καρτέλα Adjusted Stations περίπτωση α), (Δεξιά) Καρτέλα Adjusted Stations περίπτωση β) (VcE)

4.28. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling περίπτωση α) (VcE)

4.29. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling περίπτωση β) (VcE)

Καλύτερη προσέγγιση είναι η περίπτωση συνόρθωσης αφού έχει γίνει βέλτιστη εκτίμηση συνιστωσών μεταβλητότητας. Στην περίπτωση των δεσμεύσεων υψομέτρων ρεαλιστικότερη προσέγγιση αποτελεί η συνόρθωση με κάποια τυπική απόκλιση του υψομέτρου και όχι ως απόλυτα γνωστού.
iii. Ειδικότερα για GNSS παρατηρήσεις

Ας χρησιμοποιήσουμε διαφορετικά υψόμετρα γεωειδούς σε αυτή την περίπτωση, έστω με το μοντέλο EGM2008 EGSA87(HEPOS):

![Geoid Model](image)

4.30. Επιλογή μοντέλου γεωειδούς μέσω των Settings, EGM2008 EGSA87 (HEPOS)

Η τιμή του Repere δεν θα επηρεάσει τη συνόρθωσή μας. Πατάμε Save.

Στις παρακάτω εικόνες θα δούμε τα αποτελέσματα συνόρθωσης ελαχίστων δεσμεύσεων συντεταγμένων, με δέσμευση του υψομέτρου του Repere με τυπική απόκλιση ενός εκατοστού αφού έχει προηγηθεί βέλτιστη εκτίμηση συμμεταβλητότητων (χωρίς τη συμμετοχή παραμετρικού μοντέλου), για τις 4 περιπτώσεις παραμετρικού μοντέλου για τις παρατηρήσεις GNSS (No model, Scale Only, 2 Tilts, 2Tilts and Scale):

![Geoid Height Interpolation](image)

4.31. Επιλογή υπολογισμού υψομέτρων γεωειδούς και αποτελέσματα του υπολογισμού
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.32. Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS χωρίς παραμετρικό μοντέλο

4.33. Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS με παραμετρικό μοντέλο: μόνο κλίμακα

4.34. Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS με παραμετρικό μοντέλο: δύο κλίσεις

4.35. Καρτέλα αποτελεσμάτων συνόρθωσης, εστίαση στις ομάδες παρατηρήσεων, ιδιαίτερα στην ομάδα GNSS με παραμετρικό μοντέλο: δύο κλίσεις και μία κλίμακα
Τα κόκκινα τετραγωνάκια στις παραπάνω εικόνες υποδεικνύουν το σύνολο των τετραγωνικών σφαλμάτων των παρατηρήσεων GNSS χωροστάθμησης και όπως βλέπουμε μικραίνουν όσο περισσότερες παραμέτρους χρησιμοποιούμε στο μοντέλο μας, πράγμα το οποίο είναι λογικό καθώς θέλουμε αυτές τις παράμετρους να εκφράσουν τη διαφορά ανάμεσα στο τοπικό χωροσταθμικό σύστημα αναφοράς και στο μοντέλο γεωειδώς λόγω GNSS χωροστάθμησης απορροφώντας τα σφάλματα των παρατηρήσεων GNSS. Ως συνέπεια στις παρατηρήσεις παρατηρείται το ίδιο φαινόμενο, δηλαδή μικρότερες τιμές διόρθωσης όσο αυξάνουν οι παράμετροι:

![Image](https://example.com/image1)

4.36. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual χωρίς παραμετρικό μοντέλο

![Image](https://example.com/image2)

4.37. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual με παραμετρικό μοντέλο: μόνο κλίμακα

![Image](https://example.com/image3)

4.38. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual με παραμετρικό μοντέλο: δύο κλίσεις
ΚΕΦΑΛΑΙΟ 4: ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΚΑΙ ΠΑΡΑΔΕΙΓΜΑ

4.39. Καρτέλα Observation Statistics, υποκαρτέλα GNSS Levelling, εστίαση στα Residual με παραμετρικό μοντέλο: δύο κλίσεις και μία κλίμακα

Τέλος μια παρατήρηση επαλήθευσης του μοντέλου μέσο των συνορθωμένων παρατηρήσεων:

- Για την περίπτωση No model

4.40. Καρτέλα Adjusted Observations, υποκαρτέλα GNSS Levelling, εστίαση στην παρατήρηση 26-46 (No model)

4.41. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling, εστίαση στην παρατήρηση 26-46 (No model)

4.42. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling, εστίαση στην παρατήρηση 46-26 (No model)
Για την ίδια παρατήρηση από διαφορετικές μεθόδους χωροστάθμησης η συνορθωμένη παρατήρηση GNSS είναι ίδια με την συνορθωμένη παρατήρηση της τριγωνομετρικής χωροστάθμησης και αντίθετη όπως είναι λογικό καθώς είναι αντίθετης κατεύθυνσης με την συνορθωμένη παρατήρηση της γεωμετρικής χωροστάθμησης.

- Για την περίπτωση Scale only

4.43. Καρτέλα Adjusted Observations, υποκαρτέλα GNSS Levelling, εστίαση στην παρατήρηση 46-26 (Scale Only)

4.44. Καρτέλα Adjusted Observations, υποκαρτέλα Trigonometric Levelling, εστίαση στην παρατήρηση 46-26 (Scale Only)

4.45. Καρτέλα Adjusted Observations, υποκαρτέλα Spirit Levelling, εστίαση στην παρατήρηση 46-26 (Scale Only)
Η απόλυτη τιμή συνορθωμένης παρατήρησης είναι ίδια για τις παρατηρήσεις γεωμετρικής και
τριγωνομετρικής χωροστάθμησης όμως διαφέρει ελάχιστα από την τιμή της GNSS χωροστάθμησης όπως είναι
λογικό, διότι όπως φαίνεται στο κεφάλαιο 2 στην ενότητα 2.5.3 από την σχέση:

\[
(2.54) \Rightarrow \left(\Delta H_{ij}^{\text{GNSS/N}}\right)^{\text{GNSS/N}} - \left(\Delta H_{ij}^{\text{GNSS/N}}\right)^{\text{GNSS/N}} = H_j - H_i + \left(H_j^0 - H_i^0\right)a_1 + \nu_{\Delta H_{ij}^{\text{GNSS/N}}}
\]

Για να συμπίπτουν οι τιμές πρέπει να συμπεριλάβουμε και το κομμάτι \((H_j^0 - H_i^0)a_1 \) = \(\left(\Delta H_{ij}^{\text{GNSS/N}}\right)^{\text{GNSS/N}} \). Δηλαδή η GNSS παρατήρηση μας είναι 13.3593 και η συνορθωμένη 13.3599. Η κλίμακα στο συγκεκριμένο
παράδειγμα είναι 0.0000215543:

Observation groups

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Weighted Sum of Squared Errors</th>
<th>Redundancy</th>
<th>Variance Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known Coordinates</td>
<td>1</td>
<td>0.0000</td>
<td>0.00</td>
<td>0.0000</td>
</tr>
<tr>
<td>Spirit Levelling</td>
<td>8</td>
<td>4.8396</td>
<td>4.66</td>
<td>1.0391</td>
</tr>
<tr>
<td>Trigonometric Levelling</td>
<td>6</td>
<td>6.0115</td>
<td>6.00</td>
<td>1.0022</td>
</tr>
<tr>
<td>GNSS Levelling</td>
<td>6</td>
<td>5.0064</td>
<td>4.34</td>
<td>1.1524</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>15.8575</td>
<td>15.00</td>
<td>1.0572</td>
</tr>
</tbody>
</table>

GNSS Help Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Adjusted Value</th>
<th>Adjusted Sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale (ppm)</td>
<td>-21.5545</td>
<td>57.0985</td>
</tr>
</tbody>
</table>

Εκτελούμε την πράξη 13.3593 * (-0.0000215545) = -0.0002879530 και μεταφέροντας την στο άλλο
μέρος της εξίσωσης : 13.3599 + 0.0002879530 = 13.36019 = 13.3602 όσο δηλαδή η συνορθωμένη τιμή της
τριγωνομετρικής χωροστάθμησης!

Το ίδιο ισχύει και για τις περιπτώσεις με 2κλίσεις και με 2κλίσεις και μία κλίμακα. Αντίστοιχα από τους
tύπους \((2.55) \) και \((2.56) \).
ΣΥΜΠΕΡΑΣΜΑΤΑ

Συμπεράσματα

Το λογισμικό Netist αποτελεί ένα σύγχρονο πολυεργαλείο συνόρθωσης και στατιστικής επεξεργασίας τοπογραφικών και γεωδαιτικών δικτύων που συντάχθηκε στον Τμήμα Γεωδαισίας και Τοπογραφίας του Τμήματος Αγρονόμων και Τοπογράφων Μηχανικών του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης. Χρησιμοποιεί 3 διαφορετικά μοντέλα για την κάθε περίπτωση δικτύου (κατακόρυφο, οριζόντιο, τρισδιάστατο).

Κύριες Δυνατότητες:

- Ταυτόχρονη επεξεργασία διαφορετικών λύσεων συνόρθωσης του ίδιου δικτύου ή διαφορετικών δικτύων
- 2Δ γραφική απεικόνιση σταθμών, παρατηρήσεων, ελλείψεων σφάλματος δικτύου
- Αυτόματος υπολογισμός προσεγγιστικών συντεταγμένων για τους σταθμούς του δικτύου
- Δυνατότητα εισαγωγής πρόσθετων αρχείων υψομέτρων γεωειδών από το χρήστη
- Προεπιλογές ή δημιουργία ελλειψοειδών αναφοράς και προβολών από το χρήστη
- Δυνατότητα για customised re-scaling των βαρών των παρατηρήσεων
- Αυτοματοποιημένη εφαρμογή στατιστικών ελέγχων (F-test, data snooping) στα αποτελέσματα της συνόρθωσης
- Δυνατότητα εξαγωγής σε αρχεία των πινάκων των κανονικών εξισώσεων του δικτύου καθώς και του πίνακα συμ-μεταβλητοτήτων των συνορθωμένων συντεταγμένων

Καινοτομίες του Netist:

- Εύκολη εισαγωγή δεδομένων μέσο Excel αρχείων, έκδοσης 2003+
- Δυνατότητα υπολογισμού υψομέτρων γεωειδών για σημεία του Ελλαδικού χώρου μέσω του συστήματος αναφοράς του δικτύου
- Εκτίμηση συνιστωσών μεταβλητότητας αναφοράς για διαφορετικούς τύπους παρατηρήσεων
- Δυνατότητα διαχωρισμένου υπολογισμού της ακρίβειας των συνορθωμένων συντεταγμένων του δικτύου εξαιτίας (α) της ακρίβειας των παρατηρήσεων και (β) της ακρίβειας των γνωστών συντεταγμένων των σταθμών αναφοράς
- Διαφορετικές επιλογές γεωκατασκευής αναφοράς για διαφορετικούς τύπους παρατηρήσεων
- Εσωτερικές συντεταγμένες, γνωστές συντεταγμένες με βάρη, εσωτερικές δεσμεύσεις, μερικές εσωτερικές δεσμεύσεις σε ορισμένους σταθμούς του δικτύου καθώς και πλεονάζουσες εσωτερικές.
- Εισαγωγή δεδομένων αρχείων συνορθωμένων συντεταγμένων με 3 γραφικά μοντέλα
Η δομή του προγράμματος το καθιστά εύκολα επεκτάσιμο στο μέλλον. Κάποιες προτάσεις όσο αφορά τα κατακόρυφα δίκτυα είναι οι παρακάτω:

- Εφαρμογή μοντέλου σημειακής παρατήρησης GNSS και όχι ανά πλευρά που εφαρμόζεται
- Εισαγωγή παρατηρήσεων απευθείας από ψηφιακούς χωροβάτες
- Δυνατότητα εισαγωγής δεδομένων από περισσότερους του ενός χωροβάτη στο ίδιο project
- Προσθήκη αλγορίθμου για παρατήρηση μικρό-μετακινήσεων ειδικά κατά τον κατακόρυφο άξονα
- Αυτόματη σύγκριση και εξαγωγή συμπερασμάτων μεταξύ διαφορετικών project
- Προσθήκη περαιτέρω γραφημάτων

Επίσης πέραν των παραπάνω προτάσεων που αφορούν κυρίως τη συνόρθωση και στατιστική επεξεργασία των κατακόρυφων δικτύων θα μπορούσαν να ενσωματωθούν στο λογισμικό περαιτέρω τοπογραφικοί και γεωδαιτικοί υπολογισμοί. Όπως ένα πλήρη πακέτο μετασχηματισμών, επίλυση οδεύσεων καθώς και διάφοροι άλλοι χρήσιμοι τοπογραφικοί υπολογισμοί.
Παράρτημα Α: Κωδικοί Εισαγωγής Αρχείου .txt

A. Κωδικοί αναγνώρισης αρχείου Text *.txt

To txt αρχείο είναι κάπως πιο γενικευμένο για όλα τα projects και χρησιμοποιεί τους παρακάτω χαρακτήρες για να αναγνωρίσει σειρές που περιέχουν δεδομένα:

- **ST** = σταθμός
- **TS** = total station παρατηρήσεις
- **SL** = γεωμετρική χωροστάθμηση (3D & 1D)
- **GL** = GNSS χωροστάθμηση (μόνο 1D)
- **GB** = GNSS baseline (μόνο 3D)
- **AZ** = αζιμυθίο (3D & 2D)

Το txt αρχείο είναι κάπως πιο γενικευμένο για όλα τα projects και χρησιμοποιεί τους παρακάτω χαρακτήρες για να αναγνωρίσει σειρές που περιέχουν δεδομένα:

- **#** που συμβολίζουν comments και δεν διαβάζονται από το πρόγραμμα. Ο διαχωρισμός των δεδομένων στην ίδια γραμμή γίνεται με ένα TAB μόνο.

Εισαγωγή σταθμού

Η γραμμή που περιέχει σταθμό αρχίζει με τον κωδικό ST, ακολουθεί το όνομα του και ο τύπος του. Ο τύπος μπορεί να πάρει τις τιμές REF για σταθμό αναφοράς ή NEW για καινούργιο σημείο.

<table>
<thead>
<tr>
<th>ST</th>
<th>T1</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>T2</td>
<td>NEW</td>
</tr>
</tbody>
</table>

Έπειτα ακολουθούν υποχρεωτικά οι συντεταγμένες του σημείου και χωρίζονται σε 3 κατηγορίες. Οι δύο πρώτες ισχύουν για κάθε project ενώ η 3η μόνο για project κατακόρυφων δικτύων. Η μορφή συντεταγμένων που θα εισαχθούν πρέπει να έχουν σχέση με τις επιλογές (options) του project.

Αρχίζοντας με τον κωδικό P εισάγονται προβολικές συντεταγμένες (Easting, Northing) και υψόμετρο σε μέτρα. Αν ήμαστε σε project οριζόντιου δικτύου τότε μπορεί να παραληφθεί το υψόμετρο.

| ST | T1 | REF | P | 400750.000 | 4540900.000 | 204.388 |

Αρχίζοντας με τον κωδικό G εισάγονται ελλειψοειδείς γεωδαιτικές συντεταγμένες (Latitude, Longitude) σε δεκαδικές μοίρες και υψόμετρο σε μέτρα. Αν ήμαστε σε project οριζόντιου δικτύου τότε μπορεί να παραληφθεί το υψόμετρο.

| ST | T1 | REF | G | 40.3544 | 224.4984422 | 204.388 |

Για 1Δ δίκτυο συγκεκριμένα μπορεί να εισαχθεί με τον κωδικό H μόνο υψόμετρο για τον σταθμό.

| ST | T1 | NEW | H | 204.388 |

Προαιρετικά στην ίδια γραμμή σταθμοΥ μετά από τις συντεταγμένες μπορούν να ακολουθήσουν τυπικές αποκλίσεις για τις συντεταγμένες ή/και υψόμετρο γεωειδούς.

Όσον αφορά τις τυπικές αποκλίσεις παρέχονται όσες και η διάσταση του δικτύου και αρχίζουν με τον κωδικό SD.

Για project κατακόρυφου δικτύου εισάγεται η τυπική απόκλιση του υψομέτρου σε μέτρα:

| ST | T1 | REF | | SD | 0.01 |

Για project οριζόντιου δικτύου εισάγονται οι τυπικές αποκλίσεις East, North για τις οριζοντιογραφικές συντεταγμένες σε μέτρα:

| ST | T1 | REF | | SD | 0.005 | 0.005 |
Για project 3Δ δικτύου εισάγονται οι τυπικές αποκλίσεις East, North, Up σε μέτρα:

| ST | T1 | REF | ... | SD | 0.005 | 0.005 | 0.02 |

Η προαιρετική εισαγωγή γεωειδούς σε μέτρα γίνεται στο τέλος χρησιμοποιώντας τον κωδικό GEO.

| ST | T1 | REF | ... | GEO | -40.654 |

Εισαγωγή παρατηρήσεων total station

Η γραμμή που περιέχει παρατήρηση total station αρχίζει με τον κωδικό TS. Έπειτα εισάγεται το όνομα του σταθμού του οργάνου και το όνομα του σταθμού που στοχεύουμε. Μετά από τους σταθμούς καταγράφονται το ύψος οργάνου και ύψος στόχου. Για την περίπτωση που δεν χρειάζονται μπορούν να παραλειφθούν.

| TS | s1 | s2 | 1.486 | 1.436 | ... |

| TS | s1 | s2 | ... |

Υπάρχουν 4 είδη παρατηρήσεων που μπορούν να ακολουθήσουν στην γραμμή:

- Οριζόντιες διευθύνσεις με τον κωδικό DIR, σειρά διεύθυνσης για τον συγκεκριμένο σταθμό, τιμή σε grad και τυπική απόκλιση σε grad.

| ... | DIR | 1 | 30.11570 | 0.0005 | ... |

- Οριζόντιες γωνίες με τον κωδικό HA, όνομα σημείου αρχικής σκόπευσης (back sight), τιμή σε grad και τυπική απόκλιση σε grad.

| ... | HA | s3 | 38.4507 | 0.0007 | ... |

- Κεκλιμένες Αποστάσεις με τον κωδικό DS, τιμή σε μέτρα και τυπική απόκλιση σε μέτρα.

| ... | DS | 559.8550 | 0.01 | ... |

- Ζενίθειες γωνίες με τον κωδικό ZA, τιμή σε grad και τυπική απόκλιση σε grad.

| ... | ZA | 105.8030 | 0.005 | ... |

Σε μία γραμμή μπορεί να περιέχεται είτε διεύθυνση είτε οριζόντια γωνία και επίσης να παραλειφτεί κάποια παρατήρηση. Για project οριζόντιου δικτύου στη θέση της κεκλιμένης απόστασης μπορεί να εισαχθεί οριζόντια απόσταση αν δεν υπάρχει ζενίθεια γωνία.

| TS | s1 | s2 | 1.486 | 1.436 | DIR | ... | DS | ... | ZA | ... |

| TS | s1 | s2 | 1.486 | 1.436 | HA | ... | DS | ... | ZA | ... |

Για παρατήρηση τριγωνομετρικής χωροστάθμησης σε project κατακόρυφου δικτύου εισάγονται μόνο κεκλιμένη απόσταση και ζενίθεια γωνία.

| TS | s1 | s2 | 1.486 | 1.436 | DS | ... | ZA | ... |

Εισαγωγή παρατηρήσεων γεωμετρικής χωροστάθμησης

Η γραμμή που περιέχει παρατήρηση γεωμετρικής χωροστάθμησης αρχίζει με τον κωδικό SL και μπορεί να συμπεριλαμβάνεται σε project κατακόρυφου ή 3Δ δικτύου. Εισάγεται το όνομα του σταθμού της αρχής και το όνομα του σταθμού του τέλους της χωροστάθμησης, η παρατηρούμενη τιμή της ορθομετρικής υψομετρικής διαφοράς ΔΗ σε μέτρα. Τέλος αναλόγως τις επιλογές του project μπορεί να εισαχθεί το μήκος της χωροσταθμικής οδεύσης σε χιλιόμετρα ή η τυπική απόκλιση της παρατήρησης σε μέτρα.

| SL | s1 | s2 | 35.5343 | 1.079 |
ΠΑΡΑΡΤΗΜΑ Α: ΚΩΔΙΚΟΙ ΕΙΣΑΓΩΓΗΣ ΑΡΧΕΙΟΥ .TXT

Εισαγωγή παρατηρήσεων GNSS χωροστάθμησης

Η γραμμή που περιέχει παρατήρηση GNSS χωροστάθμησης αρχίζει με τον κωδικό GL και μπορεί να συμπεριλαμβάνεται μόνο σε project κατακόρυφου δικτύου. Εισάγεται το όνομα του σταθμού της αρχής και το όνομα του σταθμού του τέλους, η παρατηρούμενη τιμή της γεωμετρικής υψομετρικής διαφοράς Δh σε μέτρα και η τυπική απόκλιση της σε μέτρα. Προαιρετικά μπορεί να παρέχεται και η τυπική απόκλιση της διαφοράς υψομέτρων γεωειδούς ΔΝ σε μέτρα.

<table>
<thead>
<tr>
<th>Κωδικός</th>
<th>Σταθμός 1</th>
<th>Σταθμός 2</th>
<th>Δh (m)</th>
<th>Δσ (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GL</td>
<td>s1</td>
<td>s2</td>
<td>-14.393</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Εισαγωγή παρατήρησης βάσης GNSS

Η γραμμή που περιέχει παρατήρηση GNSS βάσης αρχίζει με τον κωδικό GB. Παρατηρήσεις GNSS βάσεων μπορούν να συμπεριλαμβάνονται μόνο σε project 3Δ δικτύου. Εισάγονται τα ονόματα των σταθμών από και προς, οι συνιστώσες ΔΧ, ΔΥ, ΔΖ σε μέτρα και τα 6 στοιχεία του συμμετρικού πίνακα μεταβλητότητας της βάσης (qXX, qXY, qXZ, qYY, qYZ, qZZ) σε m².

<table>
<thead>
<tr>
<th>Κωδικός</th>
<th>Σταθμός 1</th>
<th>Σταθμός 2</th>
<th>qXX</th>
<th>qXY</th>
<th>qXZ</th>
<th>qYY</th>
<th>qYZ</th>
<th>qZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>s1</td>
<td>s2</td>
<td>-2608.7663</td>
<td>-5185.273</td>
<td>5076.9264</td>
<td>5076.9264</td>
<td>5076.9264</td>
<td>5076.9264</td>
</tr>
</tbody>
</table>

Εισαγωγή παρατήρησης αζιμούθιου

Η γραμμή που περιέχει παρατήρηση αζιμούθιου αρχίζει με τον κωδικό AZ. Τα projects οριζόντιων και 3Δ δικτύων μπορούν να συμπεριλαμβάνουν παρατηρήσεις αζιμούθιων. Εισάγονται τα ονόματα των σταθμών του οργάνου και σκόπευσης, η παρατηρούμενη τιμή του αζιμούθιου σε grad και η τυπική απόκλιση σε grad.

<table>
<thead>
<tr>
<th>Κωδικός</th>
<th>Σταθμός 1</th>
<th>Σταθμός 2</th>
<th>Αζιμούθιο</th>
<th>Δσ (grad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>s1</td>
<td>s2</td>
<td>105.1391</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
B. Μοντέλα γεωειδούς και τρόπος εισαγωγής άλλου αρχείου γεωειδούς

Το πρόγραμμα παρέχει τρία μοντέλα γεωειδούς για τον ελλαδικό χώρο:

i. EGM2008
ii. EGM2008 EGSA87 (Translations only)
iii. EGM2008 EGSA87 (Full transformation)

Το 1ο μοντέλο (EGM2008) αναφέρεται σε ένα γεωκεντρικό σύστημα αναφοράς και είναι tidal free. Εκτείνεται από 33ο μοίρα Νότια έως 43ο Βόρεια και από 18ο μοίρα Δυτικά έως 30ο Ανατολικά. Υπολογίστηκε μέσω της σελίδας του Potsdam (http://icgem.gfz-potsdam.de/ICGEM/).

Όμως στον ελλαδικό χώρο χρησιμοποιούμε το EGSA87 το οποίο δεν είναι γεωκεντρικό και γι’ αυτό κρίθηκε σκόπιμο τα υψόμετρα του γεωειδούς να υποστούν μετασχηματισμό. Έτσι ο κάνναβος για τα μοντέλα 2 και 3 έχει ελαφρώς διαφορετικά άκρα καθώς χρησιμοποιήθηκε ως βάση ο προηγούμενος κάνναβος του 1ου μοντέλου. Έπειτα από κάποιους μετασχηματισμούς μέσο μετασχηματισμού ομοιότητας των άκρων του 1ου καννάβου από το γεωκεντρικό Σ.Α, στο EGSA87 καταλήξαμε στα άκρα του καννάβου για το EGSA87 από 34ο Νότια έως 42ο Βόρεια και από 19ο Δυτικά έως 29ο Ανατολικά.

Όλα τα μοντέλα χρησιμοποιούν δύο βήματα 300 arcsec.

Οι τύποι που ακολουθούν έχουν να κάνουν με το μετασχηματισμό υψομέτρων γεωειδούς από ένα σύστημα αναφοράς σε ένα άλλο αναφερόμενα στο ίδιο ελλειψοειδές:

\[\begin{align*}
\delta N(t_x) &= \delta h(t_x) = t_x \cos \phi \cos \lambda \\
\delta N(t_y) &= \delta h(t_y) = t_y \cos \phi \sin \lambda \\
\delta N(t_z) &= \delta h(t_z) = t_z \sin \phi \\
\delta N(\epsilon_x) &= \delta h(\epsilon_x) = -\epsilon_x N' e^2 \sin \phi \cos \phi \sin \lambda \\
\delta N(\epsilon_y) &= \delta h(\epsilon_y) = \epsilon_y N' e^2 \sin \phi \cos \phi \cos \lambda \\
\delta N(\delta s) &= (aW + N)\delta s \\
\end{align*} \]

\[\begin{align*}
\delta N(t_x) &= \delta h(t_x) = t_x \cos \phi \cos \lambda \\
\delta N(t_y) &= \delta h(t_y) = t_y \cos \phi \sin \lambda \\
\delta N(t_z) &= \delta h(t_z) = t_z \sin \phi \\
\delta N(\epsilon_x) &= \delta h(\epsilon_x) = -\epsilon_x N' e^2 \sin \phi \cos \phi \sin \lambda \\
\delta N(\epsilon_y) &= \delta h(\epsilon_y) = \epsilon_y N' e^2 \sin \phi \cos \phi \cos \lambda \\
\delta N(\delta s) &= (aW + N)\delta s \\
\end{align*} \]

\(t_x, t_y, t_z \) παράμετροι μετάθεσης στους άξονες \(x,y,z \) αντίστοιχα

\(\epsilon_x, \epsilon_y \) παράμετροι στροφής κατά τους άξονες \(x,y \) αντίστοιχα και \(\delta s \) είναι η παράμετρος κλίμακας

\[N' = \frac{a}{\sqrt{1 - e^2 \sin^2 \phi}} \]

\[W = \frac{a}{N'} \]

Το EGM2008 και το EGSA87 χρησιμοποιούν το ίδιο ελλειψοειδές, το GRS80. Για τους παραπάνω τύπους χρησιμοποιήθηκαν για \(a=6378173 \) μέτρα και \(e^2 = 0.006694380 \).
ΠΑΡΑΡΤΗΜΑ Β: ΜΟΝΤΕΛΑ ΓΕΩΕΙΔΟΥΣ

Στην περίπτωση του $2^{ου}$ μοντέλου (EGM2008 EGSA87 (Translations only)) χρησιμοποιήθηκαν τα υψόμετρα του γεωειδούς από το $1^{ο}$ μοντέλο ως \(N \) και σαν παράμετροι μετασχηματισμού μόνο οι μεταθέσεις:
\[
t_x = 199.723 \text{ m} \quad t_y = -74.030 \text{ m} \quad t_z = -246.018 \text{ m}
\]

Στην περίπτωση του $3^{ου}$ μοντέλου (EGM2008 EGSA87 (Full transformation)) χρησιμοποιήθηκαν τα υψόμετρα του γεωειδούς από το $1^{ο}$ μοντέλο ως \(N \) και σαν παράμετροι μετασχηματισμού οι παράμετροι που δίνει το HEPOS:
\[
t_x = 203.437 \text{ m} \quad t_y = -73.461 \text{ m} \quad t_z = -243.594 \text{ m}
\]
\[
\varepsilon_x = -0.170 \text{ arcsec} \quad \varepsilon_y = -0.060 \text{ arcsec} \quad \varepsilon_y = -0.060 \text{ ppm}
\]

Τα καινούρια μοντέλα γεωειδούς εισάγονται με την μορφή αρχείων *\.grd από την επιλογή Custom στα μοντέλα γεωειδούς και πατώντας Browse.

Η μορφή τους είναι στην ουσία Text και μπορούν να ανηχθούν με αυτή τη μορφή για την καλύτερη κατανόηση του περιεχόμενου τους.

78
Στην πρώτη γραμμή δίνεται το Βόρειο άκρο του πλέγματος. Έπεται το Νότιο, μετά το Δυτικό και μετά το Ανατολικό, όλα σε δεκαδικές μοίρες. Μετά ακολουθεί το 1ο βήμα από Βορρά σε Νότο σε arcsec καθώς και το 2ο βήμα από Ανατολή σε Δύση και αυτό σε arcsec. Από κάτω δίνονται τα υψόμετρα του γεωειδούς σε μέτρα.

Ο τρόπος σάρωσης όπως φαίνεται και στην παρακάτω εικόνα είναι από το Βόρειο-Ανατολικό άκρο στο Νότιο-Δυτικό άκρο. Πιο συγκεκριμένα ξεκινάει από το Βόρειο-Ανατολικό άκρο και πηγαίνει με το 2ο βήμα προς το Δυτικό άκρο, όταν φτάσει σε αυτό εφαρμόζεται το 1ο βήμα και ξεκινάμε από το Ανατολικό άκρο ξανά.

2. International Association of Oil & Gas Producers (2013) – Coordinate Conversion and Transformations including Formulas, OGP Publication 373 Guidance Note Number 7, part 2

10. Ρωσσικόπουλος Δ. (2001) – Τοπογραφικά δίκτυα και υπολογισμοί, β’ έκδοση, Εκδόσεις Ζήτη

11. Δερμάνης Α., Ρωσσικόπουλος Δ., Φωτίου Α.Ι. (1995) – Τοπογραφικοί υπολογισμοί και συνορθώσεις δικτύων, ανάλυση προγραμμάτων και παραδείγματα. Εκδόσεις Ζήτη

12. Φωτίου Α.Ι. (2007) – Γεωμετρική Γεωδαισία, Θεωρία και Πράξη. Εκδόσεις Ζήτη

13. Κωτσάκης Χ., Κατσάμπαλος Κ., Γιαννίου Μ. – Μοντέλο μετασχηματισμού συντεταγμένων μεταξύ του συστήματος αναφοράς του HEPOS(HTRS07) και του Ελληνικού Γεωδαιτικού Συστήματος Αναφοράς (ΕΓΣΑ87), Βασική μεθοδολογία και αριθμητικά παραδείγματα. ΤΑΤΜ ΑΠΘ, Κτηματολόγιο Α.Ε.