ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μεθοδολογία Συντήρησης σε Δίχρονες Μηχανές Εσωτερικής Καύσης στον Ηλεκτροπαραγωγό Σταθμό Δεκέλειας της ΑΗΚ

ΧΑΤΖΗΓΕΩΡΓΙΟΥ ΜΑΡΙΟΣ
ΑΕΜ 5449

Επιβλέπων: Βλάχος Δημήτριος
Καθηγητής Α.Π.Θ.

Θεσσαλονίκη, Σεπτέμβριος, 2017
Πρόλογος

Το αντικείμενο της παρούσας διπλωματικής εργασίας αφορά την εξέταση της μηχανολογικής συντήρησης που διενεργείται στον εξοπλισμό ενός εκ των τριών ηλεκτροπαραγωγικών σταθμών της Αρχής Ηλεκτρισμού Κύπρου, σε αυτόν της Δεκέλειας. Συγκεκριμένα, μελετάται η συντήρηση που γίνεται στις μηχανές εσωτερικής καύσης του σταθμού και ειδικότερα στις δίχρονες μηχανές εσωτερικής καύσης.

Αρχικά γίνεται μια γενική προσέγγιση του ορισμού της συντήρησης, με παρουσίαση των διαδεδομένων μεθόδων συντήρησης και την οργάνωσή τους. Ακολούθως γίνεται μια αναφορά της λειτουργίας του ηλεκτροπαραγωγού σταθμού της Δεκέλειας καθώς και μια επεξήγηση της γενικής λειτουργίας των μηχανών εσωτερικής καύσης. Η περιγραφή της λειτουργίας του σταθμού έγινε με τον απλότερο δυνατό τρόπο. Έπειτα, με βάση τη συλλογή στοιχείων από το σταθμό, δόθηκε περιγραφή της μεθοδολογίας και του προγραμματισμού συντήρησης που πραγματοποιείται στο κομμάτι του σταθμού που σχετίζεται με τις δίχρονες μηχανές εσωτερικής καύσης. Για την εύρεση των στοιχείων αυτών κρίθηκε απαραίτητη η προσωπική παρουσία στο σταθμό σε συνθήκες καθημερινής λειτουργίας και εργασίας, καθώς και η συνεργασία με τη διεύθυνση λειτουργίας και το αρμόδιο τεχνικό προσωπικό του τομέα μηχανολογικής συντήρησης.

Θα ήθελα να ευχαριστήσω ιδιαίτερα το διευθυντή της λειτουργίας του σταθμού κ. Γερόλεμο Μιχαήλ, τον ανώτερο διευθυντή του Τμήματος Συντήρησης κ. Χαράλαμπο Κωνσταντινίδη για τα λεπτομερή στοιχεία που μου διέθεσαν για τη λειτουργία των μηχανών και τις διαδικασίες συντήρησης τους, καθώς και τους τεχνικούς του σταθμού για τις συνεχείς επεξεργάσεις και αναφορές τους σχετικά με τη δομή και τη λειτουργία των μηχανών και των εξαρτημάτων που τις απαρτίζουν.
Περιεχόμενα

1. Εισαγωγή ... 5
 1.1 Γενικά ... 5
 1.2 Ορισμός συντήρησης ... 5
 1.3 Ιστορικό εξέλιξης της συντήρησης ... 6
 1.4 Μέθοδοι συντήρησης ... 7
 1.4.1 Συντήρηση Αποκατάστασης Βλαβών ή Διορθωτική Συντήρηση (Breakdown Maintenance) 8
 1.4.2 Βελτιωτική Συντήρηση (Improvement Maintenance) 9
 1.4.3 Προληπτική Συντήρηση (Preventive Maintenance) 9
 1.4.4 Προβλεπτική Συντήρηση (Predictive Maintenance) 11
 1.4.5 Συντήρηση Ακριβείας ... 13
 1.5 Οργάνωση – Διοίκηση συντήρησης ... 14
 1.6 Σχεδιασμός οργάνωσης συστήματος ... 14
 1.7 Συστήματα οργάνωσης με τη χρήση λογισμικού CMMS 15

2. Περιγραφή ηλεκτροπαραγωγού σταθμού Δεκέλειας .. 16
 2.1 Συνοπτική περιγραφή ... 16
 2.2 Ιστορικό σταθμού .. 17
 2.3 Οργανωτική δομή του σταθμού ... 18
 2.4 Λειτουργία του σταθμού ... 19
 2.4.1 Λειτουργία ατμοηλεκτρικής μονάδας ... 19
 2.4.2 Περιγραφή ατμοηλεκτρικής μονάδας ... 21
 2.4.3 Λειτουργία μηχανών εσωτερικής καύσης .. 23
 2.4.4 Δομή μηχανών εσωτερικής καύσης ... 26

3. Διαδικασίες συντήρησης στις μονάδες εσωτερικής καύσης 32
 3.1 Μεθοδολογία συντήρησης στο σταθμό ... 32
 3.2 Γενική συντήρηση στην υπομονάδα ICE-1 ... 34
 3.2.1 Γενική αναφορά .. 34
 3.2.2 Περιγραφή εξοπλισμού .. 35
 3.2.3 Προσωπικό και καταμερισμός εργασιών .. 36
 3.2.4 Περιγραφή εργασιών γενικής συντήρησης ... 41
 3.2.5 Αναλυτική περιγραφή και παρατηρήσεις κατά τη συντήρηση των διάφορων εξαρτημάτων ... 46
 3.2.6 Διαδικασίες εκκίνησης μηχανής ... 64
3.2.7 Έλεγχοι για τη διασφάλιση ποιότητας λειτουργίας .. 67
3.3 Διαχείριση Ανταλλακτικών ... 69
4. Συμπεράσματα .. 71
5. Βιβλιογραφία ... 73
6. Παράρτημα .. 74
Πίνακας 3.1 ... 74
Πίνακας 3.10 .. 78
1. Εισαγωγή

1.1 Γενικά

Στη σύγχρονη εποχή, η ραγδαία τεχνολογική ανάπτυξη παίζει πρωτεύοντα ρόλο στη διαμόρφωση, τη βιωσιμότητα, τον ανταγωνισμό και την εδραίωση των διάφορων επιχειρήσεων που είτε λαμβάνουν χώρο στην παγκόσμια αγορά, είτε απασχολούνται σε τοπικό επίπεδο. Βασικός στόχος των σύγχρονων επιχειρήσεων αποτελεί η παροχή υπηρεσιών για ικανοποίηση των απαιτήσεων των πελατών με παράλληλη παραγωγή προϊόντων υψηλής ποιότητας με το ελάχιστο δυνατό κόστος και τη μεγαλύτερη δυνατή κερδοφορία και αποδοτικότητα. Όλα αυτά καθιστούν τη συντήρηση και την εκλογή-διαχείριση εξοπλισμού, μια διαδικασία βέλτιστης σημασίας. Με τη ορθολογιστική χρήση κατάλληλου οργανωτικού προγράμματος συντήρησης επιτυγχάνεται έγκαιρη αντιμετώπιση και μείωση τυχόν αποτυχιών και αστοχιών του εξοπλισμού, μείωση των δαπανών και αύξηση της αποδοτικότητας μιας επιχείρησης.

1.2 Ορισμός συντήρησης

Συντήρηση ορίζεται ως το σύνολο των ενεργειών που μπορούν να ανακαλύψουν την έναρξη βλαβών στον εξοπλισμό και γενικότερα διασφαλίζουν την ποιότητα και τη συνεχή λειτουργία του τεχνολογικού εξοπλισμού μιας βιομηχανικής επιχείρησης, κατά τη διάρκεια ζωής του.

Οι διαδικασίες συντήρησης είναι άμεσα συνδεδεμένες με την παραγωγή, οπότε βασικός στόχος είναι η παραγωγή προϊόντων με το μικρότερο δυνατό κόστος και την καλύτερη δυνατή ποιότητα. Αναλυτικότερα η συντήρηση πρέπει να εξασφαλίζει:

- Απρόσκοπτη λειτουργία εξοπλισμού και εξασφάλιση της απαιτούμενης στάθμης αξιοπιστίας του
- Μείωση χαμένου χρόνου αναμονής και εκτέλεσης εργασιών
- Επέκταση χρόνου ζωής εξοπλισμού
- Βελτιστοποίηση ποιότητας αποτελεσμάτων
• Ελαχιστοποίηση κόστους με την οικονομικότερη λειτουργία και τη μέγιστη παραγωγικότητα του εξοπλισμού
• Συνεχής πληροφόρηση για βελτίωση του εξοπλισμού
• Αύξηση της διαθεσιμότητας του εξοπλισμού
• Αύξηση της διαθεσιμότητας της παραγωγής
• Προστασία της υγείας και της ασφάλειας των εργαζομένων από τους κινδύνους των εγκαταστάσεων και του εξοπλισμού που χειρίζονται
• Προστασία του περιβάλλοντος

1.3 Ιστορικό εξέλιξης της συντήρησης

Σύμφωνα με τον John Moubray στο βιβλίο του Reliability-Centered Maintenance, η εξέλιξη της συντήρησης χωρίζεται σε τρεις περιόδους:

Η πρώτη περίοδος καλύπτει το διάστημα μέχρι και τον δεύτερο παγκόσμιο πόλεμο. Μέχρι τότε οι βιομηχανίες εδίναν μεγαλύτερη βάση στο ανθρώπινο δυναμικό και μικρότερη στις μηχανές, άρα και στη συντήρησή τους. Ο εξοπλισμός των βιομηχανιών ήταν συνήθως μικρής πολυπλοκότητας αφού η βιομηχανία βρισκόταν σε πρώιμα στάδια ανάπτυξης και σχεδιασμένος με μεγάλο βαθμό ασφαλείας, κάτι που του προσέδιδε συνεχή αξιοπιστία και εύκολη επισκευασιμότητα. Ως εκ τούτου δεν υπήρχε κάποιο συστηματικό πρόγραμμα συντήρησης, παρά αντικατάσταση του εξοπλισμού όταν χρειαζόταν. Αυτή ήταν και η πρώτη προσέγγιση συντήρησης, που ονομάστηκε λειτουργία ως τη βλάβη.

Η δεύτερη περίοδος χρονολογείται με το πέρας του δεύτερου παγκόσμιου πόλεμου, όπου άρχισε να παρατηρείται μεγαλύτερη χρήση των μηχανών και ελάττωση του ανθρώπινου δυναμικού, κάτι που οδήγησε τις βιομηχανίες να δουν τα θέματα συντήρησης πιο προσεγγιστικά. Η πολυπλοκότητα των μηχανών αυξήθηκε σημαντικά, με αποτέλεσμα το κόστος μη λειτουργίας τους να γίνει ψηλότερο. Η εξέλιξη αυτή οδήγησε στην ανάπτυξη της ιδέας της προληπτικής συντήρησης, ένα πιο προγραμματισμένο σύστημα συντήρησης σε καθορισμένες χρονικές διαστάσεις.

Από τη δεκαετία του 60 και μετά, οι απαιτήσεις και οι ανάγκες αρχικά της αεροπορικής βιομηχανίας και ακολούθως άλλων τομέων, έκριναν απαραίτητη τη συστηματική παρακολούθηση
και επιθεώρησή του εξοπλισμού για τη μείωση εμφάνισης αστοχιών. Έτσι, σε συνδυασμό με την αναζήτηση πληθώρας νέων τεχνικών συντήρησης, από τα μέσα της δεκαετίας του 80 άρχισε να επικρατεί η προσέγγιση της προβλεπτικής συντήρησης, με βάση την ισχύουσα κατάσταση μιας βιομηχανίας. Πλέον δίνεται μεγαλύτερη έμφαση σε θέματα αξιοπιστίας του εξοπλισμού, αυξάνεται η διάρκεια ζωής των μηχανημάτων, παράγονται προϊόντα καλύτερης ποιότητας και υπάρχει επαρκέστερη σχέση μεταξύ κόστους-αποτελεσματικότητας.

Τα τελευταία χρόνια έχει αρχίσει να εφαρμόζεται σε κάποιες περιπτώσεις μια νέα προσέγγιση συντήρησης, η Συντήρηση Ακριβείας, που πέρα από τον έλεγχο της κατάστασης του εξοπλισμού, δίνει περισσότερη σημασία στον έλεγχο και την παρακολούθηση της ποιότητας των παραγόμενων προϊόντων. Ωστόσο αυτή η μέθοδος ακόμα δεν είναι διαδεδομένη και αποτελεί το μέλλον της συντήρησης.

Σχήμα 1.1: Ιστορική εξέλιξης της συντήρησης

1.4 Μέθοδοι συντήρησης

Με βάση την ιστορική αναδρομή που έγινε, οι βασικοί τύποι συντήρησης διακρίνονται:

i. Στη συντήρηση αποκατάστασης βλαβών ή διορθωτική συντήρηση
ii. Στη βελτιωτική συντήρηση,
iii. Στην προληπτική συντήρηση και
iv. Στην προβλεπτική συντήρηση

Σχήμα 1.2: Βασικοί μέθοδοι συντήρησης

1.4.1 Συντήρηση Αποκατάστασης Βλαβών ή Διορθωτική Συντήρηση (Breakdown Maintenance)

Αναφέρεται στη συντήρηση που γίνεται σε περίπτωση εμφάνισης αιφνίδιας βλάβης του εξοπλισμού και της αποκατάστασής της. Ουσιαστικά χαρακτηρίζεται από απουσία οποιασδήποτε ενέργειας για πρόληψη τυχόν βλάβης στον εξοπλισμό μέχρι την εμφάνιση αστοχίας, γι’ αυτό και δεν αποτελεί συνεχόμενη διαδικασία. Η εμφάνιση των βλαβών μπορεί να οφείλεται από σφάλματα που προκύπτουν στον εξοπλισμό κατά τη λειτουργία του, από ακατάλληλα υλικά κατασκευής, λόγω ελλιπή σχεδιασμού ή από λάθη που έγιναν κατά την κατασκευή.

Η Συντήρηση Αποκατάστασης Βλαβών διαιρείται σε δύο βασικές κατηγορίες. Η πρώτη κατηγορία αφορά βλάβες σε μέρη του εξοπλισμού που επηρεάζουν άμεσα τη διαδικασία του συστήματος παραγωγής και για αυτό χρίζουν άμεσης επιδιόρθωσης (Immediate). Η δεύτερη κατηγορία έχει να κάνει με επισκευές και αποκατάσταση των ανεπιθύμητων βλαβών που δεν επηρεάζουν άλλες χρήσιμες λειτουργίες και είναι κατά κάποιο τρόπο δευτερευόντος σημασίας (Deferred). Οι επιδιορθώσεις αυτές αφορούν βασικά καταστάσεις ρουτίνας.

Γενικά, βασικό πλεονέκτημα αυτής της μεθόδου συντήρησης είναι η εφαρμογή της συνήθως σε εξοπλισμό μικρής ισχύος, που δεν είναι ζωτικής σημασίας στη λειτουργία παραγωγής μιας επιχείρησης. Ωστόσο το κόστος συντήρησης σ’ αυτή την περίπτωση ενδέχεται να είναι πολύ ψηλό. Το ανωτέρω κόστος αποκατάστασης οφείλεται λόγω της υπερωριακής εργασίας, της
έκτακτης προσέλευσης προσωπικού σε μη εργάσιμες ώρες και της απεύθυνσης σε εξωτερικούς παράγοντες, φαινόμενα που είναι συνηθισμένα σε βιομηχανίες που ακολουθούν το συγκεκριμένο τρόπο προσέγγισης της συντήρησης. Επίσης, η απουσία συστηματικού ελέγχου των μηχανημάτων, οδηγεί σε μεγάλους χρόνους εύρεσης και αποκατάστασης βλαβών, επομένως σε αυξημένους νεκρούς χρόνους. Εξάλλου μεγάλου αποθέματος αφού το γεγονός ότι δεν είναι γνωστό πότε ακριβώς θα παρουσιάσει κάποιο σφάλμα ο εξοπλισμός, αναγκάζει την επιχείρηση να διατηρεί αρκετά μεγάλο απόθεμα ανταλλακτικών.

1.4.2 Βελτιωτική Συντήρηση (Improvement Maintenance)

Αναφέρεται στην τροποποίηση και αναβάθμιση του εξοπλισμού χωρίς όμως τη μεταβολή της απαιτούμενης λειτουργίας του. Ενίοτε περιλαμβάνει και την ολική αντικατάσταση του εξοπλισμού μιας επιχείρησης. Στοχεύει στην ελαχιστοποίηση του χρόνου που ο εξοπλισμός βρίσκεται εκτός λειτουργίας, στο σχεδιασμό και την ανεμπόδιστη παροχή ανταλλακτικών στον εξοπλισμό και στην αναβάθμιση των χαρακτηριστικών των μηχανών με κατάλληλες μετατροπές για καλύτερη ποιότητα παραγωγής και μείωση κόστους.

Απαραίτητη προϋπόθεση για αποτελεσματική εφαρμογή της Βελτιωτικής Συντήρησης, είναι η αρχειοθέτηση του ιστορικού βλαβών που αφορά τον εξοπλισμό καθώς και τη δημιουργία λίστας από την επιχείρηση με τους πιο κατάλληλους προμηθευτές. Με αυτό τον τρόπο δίνεται η δυνατότητα στο προσωπικό συντήρησης η τροποποίηση και η αναβάθμιση του εξοπλισμού να γίνεται είτε από την ίδια την επιχείρηση, είτε να απευθυνθεί σε τρίτους, νοούμενο ότι θα υπάρχει συνεχής επικοινωνία και καλή συνεργασία μεταξύ της επιχείρησης και των προμηθευτών. Επιπρόσθετα το υφιστάμενο προσωπικό συντήρησης πρέπει να είναι ενήμερο για τις νέες τεχνολογικές τάσεις που εμφανίζονται στην αγορά, έχοντας υπόψη πάντοτε την ηλικία του εκάστοτε εξοπλισμού.

1.4.3 Προληπτική Συντήρηση (Preventive Maintenance)
Η Προληπτική Συντήρηση αποτελεί την εξέλιξη της Βελτιωτικής και της Συντήρησης Αποκατάστασης Βλαβών. Από τα μέσα και μετά του περασμένου αιώνα, η αυτοματοποίηση και μεγαλύτερη πολυπλοκότητα του βιομηχανικού εξοπλισμού σε συνδυασμό με την αύξηση της ανταγωνιστικότητας στο πλαίσιο της παγκοσμιοποιημένης αγοράς, θέματα που αφορούσαν συντήρηση και αξιοπιστία των στοιχείων του εξοπλισμού και των εγκαταστάσεων, απέκτησαν μεγαλύτερη βαρύτητα, κάτι που οδήγησε στην ισχυρότερη μιας νέας πολιτικής συντήρησης.

Ορισμός της Προληπτικής Συντήρησης είναι η εφαρμογή συντήρησης που διενεργείται σε προκαθορισμένα χρονικά διαστήματα (time-based) ή που ανταποκρίνεται σε συγκεκριμένα κριτήρια που αφορούν την παραγωγική μονάδα (reliability-based). Στόχος είναι η μείωση της πιθανότητας βλάβης, η πρόληψη μια μελλοντικής αστοχίας στον εξοπλισμό και η έγκαιρη αντικατάσταση της βλάβης σε περίπτωση που εμφανιστεί.

Η Προληπτική Συντήρηση διακρίνεται σε δύο βαθμίδες: Η πρώτη αφορά ενέργειες λίπανσης και καθαρισμό των επιμέρους στοιχείων των μηχανών για την ομαλή λειτουργία του εξοπλισμού αλλά και κάποιες τυπικές αναβαθμίσεις που πρέπει να γίνουν. Οι διεργασίες λίπανσης απαιτούν σωστό σχεδιασμό, αφού είναι διαδικασίες που καθορίζουν σε μεγάλο βαθμό τη μακροχρόνια αξιοπιστία και τη διάρκεια ζωής του εξοπλισμού. Σε περιπτώσεις που γίνεται λίπανση σε μεγάλο αριθμό μηχανών, πρέπει να δίνεται ιδιαίτερη έμφαση σε θέματα σωστού προγραμματισμού για αποφυγή κακού ελέγχου αποθεμάτων καθώς και η παραμονή εκτός λειτουργίας του εξοπλισμού για μεγάλο χρονικό διάστημα.

Η δεύτερη βαθμίδα που ουσιαστικά αποτελεί το κύριο στάδιο της προληπτικής συντήρησης, περιλαμβάνει τις διεργασίες της λίπανσης αλλά ταυτόχρονα επιδιώκει την αποφυγή οποιασδήποτε μελλοντικής βλάβης στον εξοπλισμό καθώς και την αποκάλυψη σημαντικών φθορών των διάφορων εξαρτημάτων που μπορεί να οδηγήσουν σε αστοχία του εξοπλισμού. Κάτι τέτοιο επιτυγχάνεται με συνεχείς επιθεωρήσεις όλων των εξαρτημάτων της κάθε μηχανής καθώς και πολλές φορές αντικατάστασή τους για αποφυγή εμφάνισης βλάβης μελλοντικά. Επιπλέον, απαιτείται δημιουργία λεπτομερούς δικτύου για θέματα μελέτης εξοπλισμού, επιθεώρησης της συντήρησης και επακριβείς οδηγίες για κάθε ενέργεια συντήρησης, σε συνάρτηση με τις ώρες λειτουργίας καθώς και μηχανήματος. Με αυτή τη στρατηγική, γίνεται έγκαιρη πρόληψη καταστάσεων που μπορούν να οδηγήσουν σε βλάβη, κάτι που αποδεικνύεται οικονομικότερο από
την ξαφνική εμφάνιση μιας βλάβης στον εξοπλισμό η οποία μπορεί να προκαλέσει μεγάλη ζημιά στο σύστημα παραγωγής.

Αυτή η πολιτική συντήρησης ενδέχεται να έχει ψηλό λειτουργικό κόστος διότι προϋποθέτει τη διατήρηση κατάλληλου αποθέματος ασφαλείας ανταλλακτικών, την ύπαρξη προγράμματος συντήρησης σε περίπτωση διακοπής της λειτουργίας παραγωγής, καθώς και την κατηγοριοποίηση των μηχανών ανάλογα με το πότε χρειάζεται να γίνει επιθεώρηση συντήρησης.

Από την άλλη οδηγεί σε μείωση του συνολικού κόστους συντήρησης της επιχείρησης, λόγω της προγραμματισμένης συντήρησης και χρήσης προσωπικού που θα διατεθεί για το σκοπό αυτό. Συγκριτικά με τη μέθοδο Συντήρησης Αποκατάστασης Βλαβών, παρατηρείται μειωμένο κόστος που προκύπτει από τους νεκρούς χρόνους όταν η μονάδα παραμένει εκτός λειτουργίας, αλλά και από τη δυνατότητα έγκαιρου προγραμματισμού των χρόνων επισκευής και προμήθειας των ανταλλακτικών. Θα μπορούσε λοιπόν να χαρακτηριστεί ως μια μέθοδος με αυξημένη ποιότητα συντήρησης. Παράλαμβανε για να μπορέσει να θεωρηθεί αποδοτική και οικονομική για μια βιομηχανία η Προληπτική Συντήρηση, είναι απαραίτητη η παρουσία κατάλληλα εκπαιδευμένου προσωπικού, η ύπαρξη σωστά δομημένου συστήματος καταγραφής και διακίνησης πληροφοριών καθώς και τακτικών προγραμματισμένων ελέγχων των μηχανών.

1.4.4 Προβλεπτική Συντήρηση (Predictive Maintenance)

Η συγκεκριμένη στρατηγική συντήρησης επιτυγχάνεται με τη χρήση στοιχείων βασισμένων σε στατιστικές μεθόδους (statistical based) ή με βάση στοιχείων που καταγράφηκαν και αφορούν την παρούσα κατάσταση της επιχείρησης (condition based). Στοχεύει στον προσδιορισμό του χρόνου ζωής των διάφορων υλικών και εξαρτημάτων για τον υπολογισμό του χρόνου μέχρι την αντικατάστασή τους, με μεγαλύτερη ακρίβεια και τη διάγνωση της πραγματικής κατάστασης του εξοπλισμού. Η τεχνική αυτή περιλαμβάνει συστηματική παρακολούθηση του εξοπλισμού για τον εντοπισμό των αιτίων που προκαλούν μια βλάβη και ακολούθως λήψη των απαραίτητων ενεργειών για πρόληψή τους. Ουσιαστικά εμπεριέχει στοιχεία της Προληπτικής Συντήρησης (διαδικασίες πρόληψης) και στοιχεία της μεθόδου Αποκατάστασης Βλαβών (όταν η βλάβη είναι πλέον αναπόφευκτη).
Ο έλεγχος της κατάστασης των διαφόρων εξαρτημάτων πραγματοποιείται με τη χρήση ειδικών οργανών παρακολούθησης της λειτουργίας του εξοπλισμού και συστημάτων συγκέντρωσης πληροφοριών. Συγκεκριμένα, γίνεται σύγκριση των διαφόρων παραμέτρων λειτουργίας του εξοπλισμού, όπως η λίπανση, η θερμοκρασία, η πίεση και η τάση, σε σχέση με τα μηχανικά όρια ασφαλείας της λειτουργίας του εξοπλισμού για κάθε παράμετρο, τα οποία τέθηκαν είτε από τον κατασκευαστή είτε από την ίδια την επιχείρηση. Η μηχανή εισάγεται σε κύκλο λειτουργίας (Σχήμα 1.3). Έτσι μπορούν να βγουν στην επιφάνεια τυχόν προβλήματα μέσω συχνών επιθεωρήσεων και μετρήσεων και προσδιορίζεται ο ωφέλιμος χρόνος ζωής των εξαρτημάτων που υπολείπεται. Όταν οι μετρήσεις βρίσκονται κοντά στα όρια ασφαλείας που τέθηκαν, γίνεται εκτεταμένη ανάλυση της λειτουργίας του εξαρτήματος για εξαγωγή ασφαλών συμπερασμάτων.

Οι συνηθέστερες μετρητικές τεχνικές της Προβλεπτικής Συντήρησης για τη διάγνωση βλαβών, είναι η μέτρηση και ανάλυση των κραδασμών που διενεργείται κυρίως σε ρουλεμάν και κουζινέτα, η μέθοδος κρουστικών παλμών που επίσης χρησιμοποιείται για πρόγνωση βλαβών σε ρουλεμάν, η μέτρηση με υπερήχους για εντοπισμό ρωγμών στον εξοπλισμό, μέθοδοι τριβολογίας για ανάλυση των λιπαντικών ελαίων και η μέθοδος της θερμογραφίας.

Σχήμα 1.3: Κύκλος λειτουργίας προβλεπτικής συντήρησης
Κυρίωτερο πλεονέκτημα εφαρμογής της Προβλεπτικής Συντήρησης είναι η σημαντική μείωση του χρόνου κατά τον οποίο ο εξοπλισμός βρίσκεται εκτός λειτουργίας, η ελαχιστοποίηση των περιπτώσεων όπου οι βλάβες μπορούν να αποδειχθούν καταστροφικές για την παραγωγή καθώς επίσης και η μείωση των μη προγραμματισμένων επισκευών και συντήρησης. Επιπλέον, μειώνεται το συνολικό κόστος συντήρησης συγκριτικά με τις προαναφερθείσες μεθόδους, αφού οι δραστηριότητες ελέγχου πραγματοποιούνται όταν είναι δικαιολογημένες και έχουν ήδη προβλεφθεί από το τμήμα συντήρησης. Προκύπτει εξοικονόμηση του άμεσου κόστους με τη μείωση των κοστών από τα ασφάλιστρα ή από μείωση της συχνότητας διεργασιών Προληπτικής Συντήρησης. Έτσι συνυπολογίζεται μεγαλύτερο κέρδος για την παραγωγική μονάδα. Εκτός αυτού, η μέθοδος αυτή βοηθά στην εδραίωση της πολιτικής JIT (Just In Time) όσο αφορά τη διατήρηση ανταλλακτικών. Όλα αυτά συντείνουν στην αύξηση της αποδοτικότητας του συστήματος παραγωγής.

Από την άλλη για την εφαρμογή της Προβλεπτικής Συντήρησης απαιτείται κατάλληλη εκπαίδευση του προσωπικού στη χρήση των κατάλληλων μηχανημάτων για την εκπλήρωση της κάθε διαδικασίας συντήρησης ξεχωριστά, κάτι που αποτελεί μειονέκτημα της μεθόδου. Επιπλέον συνυπολογίζεται το κόστος για τον απαραίτητο εξοπλισμό και τις προμήθειες που απαιτούνται για τις διάφορες μετρήσεις.

1.4.5 Συντήρηση Ακριβείας

Όπως έχει ήδη αναφερθεί, τα τελευταία χρόνια έχει αναπτυχθεί μια σύγχρονη μέθοδος συντήρησης, η οποία όμως δεν είναι ακόμα ευρέως διαδεδομένη, η Συντήρηση Ακριβείας. Η συγκεκριμένη μέθοδος στοχεύει στη διόρθωση τυχόν ελαττωμάτων στο σχεδιασμό των μηχανημάτων που προήλθαν λόγω λανθασμένων χειρισμών κατά την εγκατάστασή τους ή λόγω λανθασμένης επιλογής κατασκευαστικών υλικών. Επομένως η άμεση συνεργασία του τμήματος συντήρησης με τον μηχανικό σχεδίασης είναι απαραίτητη. Η συντήρηση ακριβείας δεν αποσκοπεί μόνο στην εξάλειψη των αστοχίων του εξοπλισμού, όπως οι προηγούμενες μέθοδοι, αλλά στην εξάλειψη των αιτιών που οδηγούν στην ανάγκη για συντήρηση.

Απαραίτητη προοπόθεση για εφαρμογή της Συντήρησης Ασφαλείας είναι η ύπαρξη μιας δυναμικής διευθυντικής μονάδας, που να παρακολουθεί συνεχώς την εξέλιξη της αγοράς έτσι
ώστε να είναι σε θέση να προωθήσει καινοτόμα προϊόντα για να ικανοποιήσει τις απαιτήσεις των πελατών. Επιπρόσθετα για τη σωστή εφαρμογή αυτής της μεθόδου, χρειάζονται εξειδικευμένοι και ικανοί τεχνίτες που να μπορούν να εντοπίσουν και να επιλύσουν τα μηχανικά προβλήματα που αφορούν το σχεδιασμό.

1.5 Οργάνωση – Διοίκηση συντήρησης

Η Οργάνωση και Διοίκηση συντήρησης αποτελεί ιδιαίτερα σημαντική δραστηριότητα ενός συστήματος συντήρησης. Βασικός της στόχος είναι η μεγαλύτερη αποδοτική λειτουργία του συστήματος, μέσω της βελτιστοποίησης του προγραμματισμού και της οργάνωσης των εργασιών συντήρησης, πάντοτε σε σύμφωνα οικονομικά πλαίσια για την επιχείρηση.

Γενικά η Οργάνωση – Διοίκηση συντήρησης διαχειρίζεται στοιχεία που αφορούν τις απαιτήσεις των διεργασιών συντήρησης, τα ανταλλακτικά και το συνεχή έλεγχο τους, καθώς και τον εξοπλισμό χρήσης. Επίσης είναι υπεύθυνη για τον έλεγχο και την επίβλεψη των εργασιών συντήρησης, με τους διάφορους εργάτες που απασχολούν. Όλα αυτά τα στοιχεία λαμβάνουν χώρα με την έναρξη της λειτουργίας του εξοπλισμού. Επιπρόσθετα, έχει την ευθύνη για την επίβλεψη εξωτερικών παραγόντων, όπως κατασκευαστές, οι οποίοι συσχετίζονται άμεσα με τη συντήρηση.

Βάση των αποτελεσμάτων που εξάγει η Οργάνωση και Διοίκηση συντήρησης, εκτιμώνται νέες απαιτήσεις στη διαδικασία της συντήρησης καθώς και συνεχείς σχεδιασμοί που θα οδηγήσουν σε αύξηση της αποδοτικότητας του συστήματος.

1.6 Σχεδιασμός οργάνωσης συστήματος

Η οργάνωση της συντήρησης περιλαμβάνει το σχεδιασμό της εργασίας, τη μέτρηση της εργασίας και τη διοίκηση έργου.

Ο σχεδιασμός της εργασίας ουσιαστικά περιλαμβάνει το περιεχόμενο της κάθε εργασίας και προσδιορίζει τη μέθοδο συντήρησης που θα ακολουθηθεί, τον απαιτούμενο αριθμό εργατών, τον προγραμματισμό των πόρων συντήρησης και τα κατάλληλα εργαλεία που χρειάζονται για την εκτέλεση των εργασιών.
Επόμενο στάδιο που ακολουθεί είναι αυτό της μέτρησης εργασίας, όπου γίνεται ο υπολογισμός του χρόνου που απαιτείται για την ολοκλήρωση της κάθε εργασίας.

Τέλος η διοίκηση έργου, που υπάρχει κυρίως στις μεγαλύτερες παραγωγικές μονάδες, πραγματεύεται την ανάπτυξη δικτύων δραστηριοτήτων με την εφαρμογή κατάλληλων τεχνικών (CPM, PERT) μέσω κατάλληλου λογισμικού ηλεκτρονικών υπολογιστών.

1.7 Συστήματα οργάνωσης με τη χρήση λογισμικού CMMS

Πρώτιστος στόχος των διευθυντών συντήρησης μιας επιχείρησης είναι η καλύτερη εφαρμογή των πληροφοριών που τους διατίθενται, για επίτευξη της μεγαλύτερης δυνατής αποδοτικότητας και αποτελεσματικότητας στην παραγωγή. Ταυτόχρονα, οι μηχανικής συντήρησης έχουν να διαχειριστούν και να επεξεργαστούν πληθώρα δεδομένων για το σχεδιασμό και προγραμματισμό των διεργασιών συντήρησης και κατά τον προγραμματισμό των διαθέσιμων ανταλλακτικών της παραγωγικής μονάδας. Συνυπολογίζοντας την επαναληπτική φύση των πειραστήρων διεργασιών συντήρησης, η χρήση υπολογιστικών προγραμμάτων στην Οργάνωση-Διοίκηση συντήρησης καθίσταται απαραίτητη.

Ένα από τα πιο διαδεδομένα συστήματα οργάνωσης και διοίκησης συντήρησης με τη χρήση ηλεκτρονικού υπολογιστή είναι το CMMS (Computerized Maintenance Management System) και αφορά κυρίως μεθόδους προληπτικής συντήρησης. Το υπολογιστικό αυτό σύστημα βοηθά στην ευκολότερη δόμηση της οργάνωσης της συντήρησης και στην καταγραφή και επεξεργασία πληροφοριών για θέματα συντήρησης. Το CMMS αποτελεί μια συνεχή βάση δεδομένων για το τμήμα συντήρησης και περιέχει τα χαρακτηριστικά του σχεδιασμού οργάνωσης συντήρησης που αναλύθηκαν προηγουμένως. Έτσι γίνεται ευκολότερη η λήψη αποφάσεων από τους υπεύθυνους μηχανικούς συντήρησης και καλύτερη ενημέρωση των στελεχών που απαρτίζουν το τμήμα.
2. Περιγραφή ηλεκτροπαραγωγού σταθμού Δεκέλειας

2.1 Συνοπτική περιγραφή

Ο ηλεκτροπαραγωγός σταθμός Δεκέλειας αποτελεί ένα από τους 3 σταθμούς παραγωγής ηλεκτρικής ενέργειας στην Κύπρο μαζί με τους σταθμούς του Βασιλικού και της Μονής και είναι ο δεύτερος μεγαλύτερος εγκατεστημένος σταθμός του νησιού. Βρίσκεται ανατολικά της επαρχίας Λάρνακας σε παραθαλάσσια περιοχή η οποία ελέγχεται από τις βρετανικές βάσεις. Διαθέτει συνολικά έξι αεριοστρόβιλους με παραγόμενη ισχύ 60 MW ο καθένας και έξι μηχανές εσωτερικής καύσης με συνολική ισχύ 100 MW.

Εικόνα 2.1: Αεροφωτογραφία του ηλεκτροπαραγωγού σταθμού Δεκέλειας
2.2 Ιστορικό σταθμού

Η ηλεκτροδότηση της Κύπρου μέχρι τα μέσα του περασμένου αιώνα γίνοταν από τοπικές επιχειρήσεις παραγωγής ηλεκτρικής ενέργειας σε τοπικούς δήμους, μέχρι που οι Αγγλικές αρχές έθεσαν το ζήτημα υπαγωγής της ηλεκτροδότησης του νησιού υπό το δημόσιο καθεστώς. Έτσι στα πλαίσια της μελέτης που έγινε, ξεκίνησε η κατασκευή της πρώτης ηλεκτροπαραγωγικής μονάδας στην περιοχή της Δεκέλειας, με παράλληλη ίδρυση του κρατικού οργανισμού της Αρχής Ηλεκτρισμού Κύπρου (ΑΗΚ). Ο σταθμός τέθηκε σε λειτουργία για πρώτη φορά το 1953 με κύριο εισαγόμενο καύσιμο το μαζούτ και σταδιακά έφτασε τη συνολική δυναμικότητα των 84 MW. Με τη λειτουργία του σταθμού, απαλλοτριώθηκαν οι μέχρι τότε ιδιωτικές ηλεκτρικές επιχειρήσεις και ταυτόχρονα, κατασκευάστηκαν γραμμές μεταφοράς από το σταθμό σε όλες τις πόλεις του νησιού για παροχή ηλεκτρικής ενέργειας.

Με την ανεξαρτησία της Κύπρου εγκαθιδρύθηκε ακόμα ένας ηλεκτροπαραγωγός σταθμός, αυτός της Μονής, ενώ ο σταθμός του Βασιλικού δημιουργήθηκε πολύ αργότερα, με την πρώτη του φάση να λειτουργεί το 2000.

Επιπρόσθετα στα τέλη της δεκαετίας του 2000, ξεκίνησαν οι εργασίες για την εγκατάσταση δύο μηχανών εσωτερικής καύσης. Συγκεκριμένα το 2008 εγκαταστάθηκε μια μηχανή δίχρονου κινητήρα (2-stroke) κατασκευασμένη από τον ιαπωνικό όμιλο etaiρειών MITSUI-MAN B&W. Τέλος το 2010 ολοκληρώθηκε η κατασκευή μιας μηχανής με κινητήρα τετράχρονου κύκλου (4-stroke) με την υποστήριξη της φινλανδικής εταιρείας παραγωγής
Ηλεκτρικής ενέργειας και υπεράκτιων πλατφορμών WARTSILA. Η συνολική δυναμικότητα των δυο μηχανών ανέρχεται στα 100 MW.

2.3 Οργανωτική δομή του σταθμού

Ο σταθμός Δεκέλειας υποδιαιρείται σε έξι κύρια τμήματα με ομοιόμορφη κατανομή, το Τμήμα Επεξεργασίας και Ελέγχου, το Ηλεκτρολογικό Τμήμα, το Μηχανολογικό Τμήμα, το Τμήμα Αυτοματισμού και Ελέγχου, το Χημείο και το Στατιστικό Γραφείο του σταθμού. Ο τομέας της συντήρησης αφορά το Ηλεκτρολογικό, το Μηχανολογικό Τμήμα και το Τμήμα Αυτοματισμού και Ελέγχου.

Το Τμήμα Επεξεργασίας και Ελέγχου είναι υπεύθυνο για την παρακολούθηση και τον έλεγχο της ομαλής λειτουργίας των μηχανημάτων του σταθμού, τόσο της ατμοηλεκτρικής μονάδας, όσο και των μηχανών εσωτερικής καύσης, καθώς επίσης και για το σωστό ξεκίνημα ή κλείσιμο των μηχανών όταν απαιτείται, υπό την επίβλεψη του εκάστοτε μηχανικού βάρδια. Οι κατάλληλοι χειρισμοί γίνονται από τους αρμόδιους του τμήματος σε ειδικές αίθουσες ελέγχου. Για οποιαδήποτε βλάβη που παρουσιάζεται, το τμήμα Επεξεργασίας και Ελέγχου ενημερώνεται με την εμφάνιση προειδοποιητικών σημάτων σε υπολογιστές που είναι προσαρτημένες σε κάθε μηχάνημα και ειδοποιούν το εκάστοτε τμήμα που αφορά την βλάβη (ηλεκτρολογική, μηχανική).

Το Ηλεκτρολογικό Τμήμα του σταθμού ασχολείται με τις ηλεκτρονικές εφαρμογές του σταθμού. Έχει δηλαδή ως βασική αρμοδιότητα τη συνεχή επίβλεψη και επιδιόρθωση όλων των συσκευών που συσχετίζονται με τον ηλεκτρισμό. Επίσης το τμήμα είναι υπεύθυνο για τον έλεγχο της ροής του ηλεκτρικού ρεύματος στο σταθμό, έτσι ώστε η διανομή του ρεύματος να γίνεται χωρίς προβλήματα και να φτάνει απρόσκοπτα στους καταναλωτές.

Το Μηχανολογικό Τμήμα, το οποίο είναι το μεγαλύτερο του σταθμού, είναι υπεύθυνο για τη σωστή λειτουργία όλων των μηχανών του σταθμού και απασχολείται εξουσιοδοτημένο με το κάθε μηχανολογικό πρόβλημα που παρουσιάζεται. Ουσιαστικά είναι το αρμόδιο τμήμα για τη μηχανολογική συντήρηση των διαφόρων μηχανολογικών εξαρτημάτων και την επιδιόρθωση ατασθαλιών που παρατηρούνται και επηρεάζουν τη σωστή λειτουργία των μηχανών. Αποτελείται
από τους μηχανικούς βάρδιας, που είναι υπεύθυνοι για τη συνεχή επίβλεψη των μηχανών, τους επιστάτες και διάφορους τεχνικούς.

Ακολούθως, το Τμήμα Αυτοματισμού και Ελέγχου είναι και αυτό υπεύθυνο για θέματα εγκατάστασης, συντήρησης και επιδιώκθωσης του τεχνολογικού εξοπλισμού, καθώς και για απομόνωση ηλεκτρικών δικτύων και τοποθέτηση προσγειώσεων. Παράλληλα, το συγκεκριμένο τμήμα ασχολείται εξολοκλήρου με την εγκατάσταση και τη βαθμονόμηση διαφόρων αισθητήρων και οργάνων μέτρησης.

Στο σταθμό λειτουργεί επίσης Χημείο. Κύρια αρμοδιότητα του τμήματος είναι ο συστηματικός ελέγχος των καυσίμων, του νερού στα διάφορα σημεία των ατμογεννητριών, των λιπαντικών λαδιών και των καυσαερίων αλλά και ο χημικός καθαρισμός του εξοπλισμού. Επίσης το τμήμα είναι υπεύθυνο για τη διεξαγωγή ελέγχου και συγκέντρωσης υδραζίνης και αμμωνίας, ουσιών που είναι υπεύθυνες για την αποφυγή οξείδωσης από το παραμένον οξυγόνο κατά τη μεταφορά νερού στο συμπυκνωτή και στις διάφορες σωληνώσεις. Εκτός αυτού, το Χημείο είναι υπεύθυνο για τη διατήρηση ουρίας CO(NH2)2 σε ειδική δεξαμενή, ουσία που χρησιμοποιείται για τον καθαρισμό των καταλυτών που εγκαταστάθηκαν στις μηχανές εσωτερικής καύσης.

Τέλος, το λογιστικό και στατιστικό γραφείο του σταθμού, λαμβάνει όλα τα δεδομένα του σταθμού και αφού τα καταγράφει, τα επεξεργάζεται και τα εξάγει προς τα διάφορα τμήματα του σταθμού. Επιπλέον, το λογιστικό γραφείο είναι υπεύθυνο για την καταγραφή των ποσοτήτων μαζούτ που χορηγούνται στο σταθμό όπως και για χρηματικά ποσά που διατίθενται από το σταθμό και άλλα δεδομένα στατιστικής φύσεως.

2.4 Λειτουργία του σταθμού

2.4.1 Λειτουργία ατμοηλεκτρικής μονάδας

Η λειτουργία της ατμοηλεκτρικής μονάδας βασίζεται στην εισαγωγή μαζούτ, το οποίο προμηθεύεται από δεξαμενόπλοιο και μέσω υπόγειου υποθαλάσσιου αγωγού καταλήγει σε έξι δεξαμενές χωρητικότητας 12000 τόνων η καθεμία. Το μαζούτ μεταφέρεται στο αντιλιστάσιο και από εκεί μεταφέρεται στους λέβητες μέσω των αντλιών. Υπάρχουν επίσης τρεις αντλίες που
καταλήγουν από τις δεξαμενές στις μηχανές εσωτερικής καύσης. Το μαζούτ καίγεται στο λέβητα μέσω καυστήρων (ένας καυστήρας για κάθε λέβητα) έτσι ώστε να επιτευχθεί η ατμοποίηση του νερού. Ο απαραίτητος αέρας για την καύση του μαζούτ στο λέβητα προμηθεύεται από ανεμιστήρα καταθλίψεως, αφού προηγουμένως προθερμανθεί από τα καυσαέρια που παράγονται κατά την καύση του μαζούτ σε ειδικό χώρο που λέγεται προθερμαντήρας νερού. Στη συνέχεια ο ατμός που παράγεται στο λέβητα, διαχειμάρεται μέσω διασωληνώσεων στα πτερύγια του στροβίλου του ατμοστρόβιλου με μεγάλη ταχύτητα και ψηλή πίεση προκαλώντας την περιστροφή του ατμοστρόβιλου κατά 3000 στροφές ανά λεπτό. Ο ατμός αφού δώσει όλη του την ενέργεια, εισέρχεται στο συμπυκνωτή ατμού, όπου ψύχεται με μεγάλες ποσότητες θαλάσσιου νερού, για να διατηρήσει τη θερμοκρασία του όσο το δυνατόν πιο χαμηλή και υγροποιείται. Μέσω τροφοδοτικής αντλίας, ο υγροποιημένος ατμός διαχειμάρεται εξανά στο λέβητα για να ατμοποιηθεί. Έτσι ο κύκλος παραγωγής ηλεκτρικής ενέργειας επαναλαμβάνεται.

Με τη σειρά του ο στρόβιλος μεταδίδει την κίνηση στην ηλεκτρογεννήτρια που είναι ζευγμένη στον ίδιο άξονα μαζί του. Η γρήγορη περιστροφική κίνηση της γεννήτριας παράγει
περιστρεφόμενο μαγνητικό πεδίο με αποτέλεσμα να δημιουργείται τάση 11.000 Volt η οποία ανυψώνεται με τη βοήθεια μετασχηματιστών σε 132000 Volt. Με τη βοήθεια άλλων μετασχηματιστών η τάση υποβιβάζεται στα 240 Volt έτσι ώστε να διανεμηθεί το ηλεκτρικό ρεύμα για σκοπούς κατανάλωσης.

2.4.2 Περιγραφή ατμοηλεκτρικής μονάδας

Για τις ανάγκες της ατμοηλεκτρικής μονάδας, ο σταθμός διαθέτει έξι λέβητες κατασκευασμένους από την αυστριακή εταιρεία Waagner Biro. Είναι μονοτυμπανικού τύπου και φυσικής κυκλοφορίας νερού. Παράγουν μέχρι και 260 τόνους ατμού την ώρα σε θερμοκρασία 515 °C και πίεση 88 bar, ενώ η θερμική απόδοση του κάθε λέβητα υπολογίζεται στο 88,7%.

Οι ατμοστρόβιλοι που χρησιμοποιούνται είναι μονοκυλινδρικού τύπου με μέγιστη ισχύ 60 MW και θερμική απόδοση 38,5% και είναι ιαπωνικής προέλευσης.

Επιπλέον για προστασία του λέβητα και των διάφορων συσκευών συλληνώσεων ο σταθμός διαθέτει σύστημα επεξεργασίας νερού, έτσι ώστε το νερό που χρησιμοποιείται να είναι μεγάλης καθαρότητας. Το σύστημα αυτό περιλαμβάνει αποστακτήρες, που είναι υπεύθυνοι για την καθαρισμό του νερού από μικροοργανισμούς και βλαβερά άλατα. Περαιτέρω επεξεργασία του απεσταγμένου νερού από άλατα του μαγνησίου, του σιδήρου και άλλων αλάτων, γίνεται από το χημείο του σταθμού.

Στο σταθμό υπάρχουν και τρία κόσκινα νερού. Τα κόσκινα στρέφονται αργά με τη βοήθεια ηλεκτρικών κινητήρων, για να συγκρατούν φύκια και άλλα στερεά αντικείμενα και να τα αφαιρούν από το θαλάσσιο νερό που προορίζεται για την ψύξη του ατμού στο συμπυκνωτή.

Επίσης όπως έχει αναφερθεί, το μαζούτ αποθηκεύεται σε έξι δεξαμενές χωρητικότητας 12.000 τόνων για την καθεμιά. Οι δεξαμενές διαθέτουν σύστημα θέρμανσης (σερπαντίνες) για να προθερμαίνουν το μαζούτ με τη βοήθεια ατμού, έτσι ώστε να επιτυγχάνεται η απαιτούμενη ρευστότητα του και να αντλείται με μεγαλύτερη ευκολία στο αντλιοστάσιο.
Εικόνα 2.2: Δεξαμενές αποθήκευσης μαζώτ

Εκτός αυτού ο σταθμός διαθέτει ειδική μονάδα για επεξεργασία των βιομηχανικών λυμάτων. Η μονάδα έχει τη δυνατότητα επεξεργασίας μεγάλης ποσότητας υγρών αποβλήτων ανά ώρα, με τον όγκο τους να προέρχεται κυρίως από το πλύσιμο των ατμολεβήτων. Παράλληλα, η ύπαρξη ειδικού προχώματος μετά τις δεξαμενές αποθήκευσης του μαζώτ, βοηθά στο διαχωρισμό και καθαρισμό του νερού από το καύσιμο. Η χρήση αυτού του νερού που παράγεται από τη μονάδα επεξεργασίας γίνεται μόνο για σκοπούς άρδευσης. Εξάλλου υπάρχει και ειδικό κανάλι εξαγωγής με πλώρη, το οποίο καταλήγει στη θάλασσα, έτσι ώστε να διατηρεί το νερό σε ένα επιθυμητό επίπεδο σε περίπτωση άμπωτης αλλά και να βοηθά στη διατήρηση της οικολογίας των θαλάσσιων υδάτων.

Για τον έλεγχο των διαφόρων διαδικασιών για τη σωστή λειτουργία του λέβητα και του ατμοστρόβιλου, υπάρχει ειδική αίθουσα έλεγχου της μονάδας. Εδώ γίνεται ο έλεγχος της απαιτούμενης ποσότητας μαζώτ, αέρα και νερού που εισέρχονται στο λέβητα για την καύση, έλεγχος της θερμοκρασίας και της πίεσης του παραγόμενου ατμού, καθώς και καταγραφή ενδείξεων μετρητών βασικών παραμέτρων λειτουργίας της μονάδας. Οι παραπάνω ρυθμίσεις γίνονται με τη βοήθεια σύγχρονων αυτοποιημένων μηχανημάτων.

Από την άλλη, στην αίθουσα έλεγχου του σταθμού ρυθμίζεται η ποσότητα της ηλεκτρικής ενέργειας που παράγεται και εξάγεται από το σταθμό. Γίνεται ο κατάλληλος έλεγχος και ρύθμιση
έτσι ώστε η τάση παραγωγής να παραμένει σταθερή στα 11.000 Volt και η συχνότητα του συστήματος, που αντιστοιχεί στη ζήτηση κατανάλωσης, στα 50Hz. Μείωση της συχνότητας αυτής ισοδυναμεί με αύξηση της ζήτησης και αντίστροφα, με αποτέλεσμα να γίνονται οι κατάλληλες ρυθμίσεις για μεγαλύτερη φόρτωση των μηχανών και αύξηση του φορτίου τους. Στην ίδια αίθουσα γίνεται και ο χειρισμός σε περιπτώσεις διακοπών, με διοχέτευση της παραγόμενης ενέργειας μέσω των ζυγών στις γραμμές μεταφοράς.

Τέλος υπάρχουν οι μετασχηματιστές ισχύος που αναβιβάζουν το παραγόμενο ρεύμα στην τάση των 132.000 Volt, για ελάττωση των απωλειών κατά τη μεταφορά του ρεύματος σε όλη την Κύπρο. Από τους μετασχηματιστές ισχύος το ρεύμα μεταφέρεται μέσω ζυγών και διακοπτών στις γραμμές μεταφοράς, για διοχέτευση του προς τους καταναλωτές. Εκτός αυτού υπάρχουν και βοηθητικοί μετασχηματιστές για κάθε υπομονάδα, για να υποβιβάζουν την τάση παραγωγής στα 3.300 Volt για τη χρήση των βοηθητικών μηχανημάτων του σταθμού (auxiliaries) και γενικά τις εσωτερικές ανάγκες του σταθμού σε ενέργεια.

2.4.3 Λειτουργία μηχανών εσωτερικής καύσης

Όπως έχει ήδη αναφερθεί, στο σταθμό έχει εγκατασταθεί μια υπομονάδα (ICE-1 – Internal Combustion Engine) με τρεις δίχρονες μηχανές εσωτερικής καύσης, κατασκευασμένες από την εταιρεία MITSUI και μια υπομονάδα (ICE-2) με τρεις τετράχρονες μηχανές εσωτερικής καύσης της εταιρείας WARTSILA. Η κάθε υπομονάδα έχει συνολική παραγόμενη ισχύ περίπου 50MW (17 MW για κάθε μηχανή). Ο συνολικός θερμικός βαθμός απόδοσης των δύο μονάδων εσωτερικής καύσης ανέρχεται γύρω στο 41%.

Κάθε τετράχρονη μηχανή (ICE-2) αποτελείται από δεκαοχτώ κυλίνδρων και είναι διαμόρφωσης τύπου V. Η λειτουργία του τετράχρονου κινητήρα της μηχανής βασίζεται στο θερμοδυναμικό κύκλο του Diesel όπου το καύσιμο αυταναφλέγεται στο θάλαμο καύσης χωρίς την ύπαρξη σπινθήρα. Ο τετράχρονος κινητήρας της μηχανής ακολουθεί τέσσερις φάσεις λειτουργίας ή χρόνους δηλαδή μια διαδρομή του εμβόλου από το άνω νεκρό σημείο στο κάτω νεκρό σημείο του στροφάλου και είναι οι εξής:

- Χρόνος εισαγωγής, όπου το καύσιμο μείγμα (μαζούτ ή αργό πετρέλαιο)
εισέρχεται στο θάλαμο καύσης διαμέσου της ανοιχτής βαλβίδας εισαγωγής.

- Χρόνος συμπίεσης, όπου το έμβολο κινείται προς το όνω νεκρό σημείο με κλειστές βαλβίδες ανεβάζοντας τη θερμοκρασία του αέρα πάνω από αυτή της ανάφλεξης του καυσίμου. Στο τέλος του χρόνου συμπίεσης με τη βοήθεια μπεκ ψεκασμού προκαλείται ανάφλεξη του καυσίμου.

- Χρόνος εκτόνωσης ή χρόνος ισχύος ως αποτέλεσμα της καύσης του μίγματος αέρα-καυσίμου και την παραγωγή έργου. Οι βαλβίδες παραμένουν κλειστές ενώ η πίεση λόγω της καύσης πιέζει την κεφαλή του εμβόλου.

- Χρόνος εξαγωγής, όπου το έμβολο έχει φτάσει στο κάτω νεκρό σημείο και ανέρχεται προς τα πάνω, σπρώχνοντας τα καυσαέρια και αναγκάζοντάς τα να εξέλθουν εκτός του κυλίνδρου, διαμέσου της ανοιχτής βαλβίδας εξαγωγής.

Σχήμα 2.2: Κύκλοι λειτουργίας του τετράχρονου κινητήρα

Αντίθετα οι μηχανές της υπομονάδας ICE-1 βασίζονται στη λειτουργία του δίχρονου κύκλου. Είναι σχεδιασμένες για εκκίνηση, λειτουργία και διακοπή στη χρήση βαρέως μαζούτ. Κάθε μηχανή αποτελείται από δώδεκα κυλίνδρους οι οποίοι είναι τοποθετημένοι σε σειρά. Η λειτουργία τους βασίζεται σε μια μόνο περιστροφή του στροφαλοφόρου άξονα για ολοκλήρωση
του κύκλου, δηλαδή σε δύο χρόνους εμβόλου. Οι δίχρονες μηχανές είναι μηχανικά απλούστερες σε σχέση με τις τετράχρονες μηχανές, οστόσο καταλαμβάνουν πολύ μεγαλύτερο όγκο.

Εικόνα 2.3: Κύλινδροι του δίχρονου κινητήρα τοποθετημένοι σε σειρά, με αντλίες εισαγωγής

Κατά τη διάρκεια της συμπίεσης ο κινητήρας γυρίζει με εξωτερική βοήθεια και το έμβολο ανεβαίνει. Κατά τη διάρκεια της συμπίεσης δημιουργείται υποπίεση στο θάλαμο καύσης. Η πτώση πίεσης έχει ως αποτέλεσμα το άνοιγμα της βαλβίδας εισαγωγής μέσω της οποίας εισάγεται αέρας στο θάλαμο καύσης ο οποίος αναρροφάται. Όταν το έμβολο αλλάζει φορά κίνησης και αρχίζει να κατεβαίνει, η βαλβίδα κλείνει και τότε ξεκινά η εκτόνωση στο θάλαμο καύσης και το μίγμα συμπιέζεται στη βάση. Το έμβολο συνεχίζει να κινείται αποκαλύπτοντας τις δύο πόρτες, της bypass (πόρτα μεταφοράς) και της εξαγωγής, με αποτέλεσμα μικρό μέρος του μίγματος να εξέρχεται. Ο στρόφαλος συνεχίζει την αδρανή περιστροφή, το έμβολο ανεβαίνει κλείνοντας τις δύο πόρτες, συμπιέζοντας έτσι το μείγμα, κάνοντας μια επανάληψη της πρώτης φάσης του κύκλου. Τα αέρια εκτονώνονται σπρώχνοντας το έμβολο προς τα κάτω. Ο κινητήρας πλέον έχει εκκινήσει και μπορεί να επαναλάβει μόνον τον επόμενο κύκλο χωρίς τη βοήθεια εξωτερικών παραγόντων. Ακολουθεί και πάλι η ίδια διαδικασία, όπου το έμβολο κινείται προς τα κάτω, ανοίγει η πόρτα εξαγωγής και αμέσως μετά η πόρτα μεταφοράς, η πίεση στο έμβολο μειώνεται και ο
συμπιεσμένος αέρας εισέρχεται στον κύλινδρο, εξωθώντας το υπόλοιπο των καυσαερίων προς τα έξω.

2.4.2 Δομή μηχανών εσωτερικής καύσης

Πέρα από τον τρόπο λειτουργίας του δίχρονου κινητήρα που είναι απλούστερος από αυτόν του τετράχρονου, η δομή τους είναι παραπλάνητη και η βασική τους διαφορά έγειρε κυρίως στον όγκο και στη διάταξη των κυλίνδρων τους και των παρελκόμενων μηχανημάτων που τους απαρτίζουν.

Τόσο στο δίχρονο, όσο και στον τετράχρονο κινητήρα, ο βασικός κορμός του αποτελείται από το σώμα του κυλίνδρου και το καπάκι του (κυλινδροκεφαλή). Το σώμα του κυλίνδρου είναι κατασκευασμένο από χυτοσίδηρο και στο κάτω μέρος του σχηματίζει τοστροφαλοθάλαμο και την ελαιολεκάνη, μια δεξαμενή όπου αντλείται το λιπαντικό έλαιο. Στη δίχρονη μηχανή, η δεξαμενή αυτή δεν είναι προσαρμοσμένη στον κύλινδρο αλλά αποτελεί ανεξάρτητο σώμα. Κατά μήκος του σώματος κυλίνδρου βρίσκεται ο εκκεντροφόρος άξονας, που βοηθά στη διαμόρφωση των βαλβίδων, ανάλογα με το στάδιο του κύκλου που βρίσκεται ο κινητήρας. Μέσω κατάλληλης διάταξης ο εκκεντροφόρος άξονας συνδέεται με τον στροφαλοφόρο. Οι βαλβίδες βρίσκονται στην κεφαλή του κυλίνδρου.

Ακολούθως, στον κορμό του κυλίνδρου βρίσκεται ο θάλαμος καύσης. Ο λόγος του όγκου του βαλβίδος καύσης ως προς τον όγκο εκτόπισης του εμβόλου, ο οποίος σαρώνεται σε κάθε διαδρομή του εμβόλου, καθορίζει το λόγο συμπίεσης. Ο λόγος συμπίεσης διαδραματίζει σε μεγάλο βαθμό τη θεωρητική απόδοση του κύκλου του κινητήρα.

Στη συνέχεια συναντάται το σύστημα διωστήρα-στροφάλου και αποτελείται από το έμβολο, το διωστήρα και τον στροφαλοφόρο άξονα. Το έμβολο (piston) έχει τη μορφή αναστραμμένου κυπέλλου, είναι κατασκευασμένο από χάλυβα και δέχεται τη δύναμη των καυσαερίων. Ο διωστήρας ή μπιέλα συνδέει το έμβολο με το στρόφαλο και μετατρέπει την παλινδρομική κίνηση του εμβόλου σε περιστροφική. Τέλος, ο στροφαλοφόρος είναι συνδεδεμένος με το διωστήρα μέσω πείρου και η θέση του είναι ανάλογη με τη σειρά ανάφλεξης των κυλίνδρων.
Σχήμα 2.3: α) Σύστημα διωστήρα-στροφάλου και β) Έμβολο ή πιστόνι

To τρίτο σύστημα που αφορά τη λειτουργία των δίχρονων και τετράχρονων κινητήρων αφορά το σύστημα δημιουργίας του μίγματος και αποτελείται από τον εξαερωτήρα (carburetor) και την αντλία έγχυσης (injection pump). Ο εξαερωτήρας είναι διάταξη που εισάγει καύσιμο σε ρεύμα αέρα όταν εισέρχεται στον κινητήρα. Το ρεύμα αέρα εισέρχεται μέσω μιας αντλίας δέκτη αέρα (scavenging air receiver) από τον υπερτροφοδότη. Μέσω πλωτήρα, η στάθμη του καυσίμου διατηρείται σε ένα επιθυμητό επίπεδο. Μόλις ο αέρας προωθηθεί προς τους κυλίνδρους, αρχίζει να επιταχύνεται δημιουργώντας υποπίεση με αποτέλεσμα να προκαλείται η έγχυση του καυσίμου από τον αναβληστήρα.

Πέρα από τα τρία βασικά δομικά συστήματα λειτουργίας, οι δίχρονοι και τετράχρονοι κινητήρες του σταθμού απαρτίζονται και από βοηθητικές διατάξεις. Η πρώτη από αυτές έχει να κάνει με το σύστημα ανάφλεξης του καυσίμου. Το σύστημα αυτό αποτελείται από αντλίες με το ανάλογο σύστημα διανομής και καταλήγει στους εγχυτήρες ψεκασμού καυσιμού (μπεκ). Τα μπεκ είναι ηλεκτρομαγνητικής μορφής και είναι εκτεθειμένα στις ψηλές θερμοκρασίες και πιέσεις που λαμβάνουν μέρος στο θάλαμο καύσης. Έχουν κατάλληλα διαμορφωμένα ακροφύσια έτσι ώστε να εγχύουν και να διασκορπίζουν το καύσιμο στο θάλαμο καύσης.

Όπως και στην περίπτωση λειτουργίας της ατμοηλεκτρικής μονάδας, έτσι και εδώ υπάρχει συζευκτής (flexible coupling) που ενώνει τον κινητήρα με τη γεννήτρια. Η κάθε γεννήτρια παράγει τάση 11.000 Volt σε συχνότητα 50 Hz.
Εικόνα 2.4: Μπεκ στο Τμήμα Συντήρησης για καθαρισμό.

Επίσης στο βοηθητικό εξοπλισμό συμπεριλαμβάνεται ο υπερτροφοδότης (turbocharger). Με τη συνεχή αύξηση της ταχύτητας του κινητήρα, η ισχύς καταλήγει σε μια μέγιστη τιμή, με αποτέλεσμα τη μείωση του εισαγόμενου αέρα στον κινητήρα. Έτσι σε ταχύτητες πάνω από την οριακή, ελαττώνεται η τροφοδοσία του αέρα σε κάθε κύκλο του κινητήρα, με αποτέλεσμα τον περιορισμό της απόδοσης του συστήματος. Για την αντιμετώπιση του μειονεκτήματος αυτού στις ψηλές στροφές του κινητήρα, εισάγεται ο υπερτροφοδότης, ο οποίος βοηθά στην αύξηση της πίεσης και της ποσότητας του αέρα που εισέρχεται στον κύλινδρο. Η λειτουργία του βασίζεται στην κίνηση ενός φυγόκεντρου φυσητήρα μέσω αεριοστρόβιλου. Στο σταθμό διατίθενται έξι υπερτροφοδότες, ένα για την κάθε υπομονάδα των ICE-1 και ICE-2 αντίστοιχα.

Αντίθετα κατά τη λειτουργία της μηχανής σε χαμηλές στροφές, κατά το ξεκίνημα της γίνεται χρήση ειδικού ανεμιστήρα αέρα (motor air blower) μέχρις ότου ο κινητήρας να φτάσει τις 177 στροφές και να επιτευχθεί συντονισμός. Να αναφερθεί ότι ως ενεργειακό μέσο για το ξεκίνημα των μηχανών χρησιμοποιείται πεπιεσμένος αέρας με λειτουργία βασισμένη σε πνευματικό σύστημα.
Απαραίτητο για την ομαλή λειτουργία των κινητήρων είναι η ύπαρξη συστήματος ψύξης. Το νερό αφού πρώτα περάσει από τα κόσκινα του σταθμού για καθαρισμό και ακολούθως από σύστημα φίλτρων με υπεριώδη ακτινοβολία (UV) για περαιτέρω μικροβιακή απολύμανση του νερού, καταλήγει σε ειδικά ψυγεία (coolers) τα οποία βρίσκονται γύρω από τον κινητήρα. Οι κινητήρες επειδή είναι υγρόψυκτοι απελευθερώνουν θερμότητα με τη βοήθεια του νερού και την αποδίδουν στα ψυγεία, ενώ ένας θερμοστάτης στα χιτώνια των κυλίνδρων κρατά τη θερμοκρασία σταθερή.

Εικόνα 2.6: Ψυγείο για τη ψύξη νερού.
Επίσης υπάρχει το σύστημα λίπανσης (lub oil system) που εξυπηρετεί στη μείωση τριβών. Το σύστημα λίπανσης τροφοδοτείται από τη δεξαμενή του λιπαντικού και μέσω αντλίας προωθείται σε σύστημα αγωγών και από εκεί φτάνει υπό πίεση στο στροφαλοφόρο άξονα. Μέσω ειδικών οπών του στροφαλοφόρου, το λιπαντικό εκτινάσσεται και διαβρέχει τα τοιχώματα των κυλινδρών, τα έκκεντρα και τα έμβολα μέχρι και τους πείρους των διωστών. Η υποχρεωτική λίπανση εξασφαλίζει την ασφαλή λίπανση όλων των κινούμενων μερών του κινητήρα ενώ παράλληλα αποτελεί ένα μέσο ψύξης για τον κινητήρα. Στους δίχρονους κινητήρες υπάρχει και ειδικό σύστημα λίπανσης στους κυλινδρούς (cylinder oil), το οποίο εισέρχεται στο εσωτερικό του κυλινδρού μέσω ειδικών διαμορφώσεων στα τοιχώματά του και καταλήγει στον αποθηκευτικό χώρο μεταξύ του κυλινδρού και του εμβόλου (κιβώτιο γεμίσματος – stuffing box).

Στο βοηθητικό εξοπλισμό ανήκει και το σύστημα επεξεργασίας καυσίμων το οποίο περιλαμβάνει ειδικούς διαχωριστές (separators) και αντλίες τροφοδοσίας (feed pump). Οι διαχωριστές είναι υπεύθυνοι για τον καθαρισμό του μαζούτ και την απομάκρυνση των διάφορων ακαθαρσιών από αυτό. Η διοχέτευση του καυσίμου γίνεται από τις δεξαμενές αποθήκευσης του δια μέσου των αντλιών τροφοδοσίας. Ειδικοί διαχωριστές υπάρχουν και για τον καθαρισμό του νερού ψύξης.

Εικόνα 2.7: Διαχωριστές για καθαρισμό α) καυσίμου και β) νερού
Στο πάνω μέρος των κυλίνδρων εδράζεται το σύστημα εξαγωγής, το οποίο αποτελείται από σιγαστήρα για απόσβεση των ταλαντώσεων, εξαγωγή των καυσαερίων πιο ομαλά και μείωση του παραγόμενου θορύβου. Στο σιγαστήρα έχουν τοποθετηθεί ειδικοί καταλύτες για έλεγχο των εκπομπών καυσαερίων και μείωση των άκαυστων υδρογονανθράκων και του οξειδίου του αζώτου, ουσίες που είναι επιβλαβείς προς το περιβάλλον. Η παραγόμενη τέφρα μετά την επεξεργασία από τους καταλύτες, καταλήγει στα φουγάρα του σταθμού όπου και εξέρχεται στο περιβάλλον. Μάλιστα στους κινητήρες του υποσταθμού ICE-1, έχουν εγκατασταθεί πρόσφατα ειδικοί καταλύτες γερμανικής κατασκευής, έτσι ώστε να γίνεται επεξεργασία των παραγόμενων καυσαερίων και μείωση των εκπομπών των ρύπων στα πλαίσια σχετικής νομοθεσίας της Ευρωπαϊκής Ένωσης.

Εικόνα 2.8: Διάταξη του καταλύτη με σύστημα αντιστήριξης στον υποσταθμό ICE-1
3. Διαδικασίες συντήρησης στις μονάδες εσωτερικής καύσης

3.1 Μεθοδολογία συντήρησης στο σταθμό

Με βάση τη σημερινή κατάσταση στις δύο μονάδες εσωτερικής καύσης στο σταθμό, η μεθοδολογία της συντήρησης που εφαρμόζεται, αποτελεί μια μορφή προληπτικής συντήρησης, λόγω του προγραμματισμένου οργανογράμματος το οποίο έχει θέσει ο σταθμός, με στοιχεία προβλεπτικής συντήρησης σε ορισμένα εξαρτήματα των κινητήρων που απαιτούν κατάλληλες μετρήσεις και συγκρίσεις με σταθερά πρότυπα. Συγκεκριμένα διενεργείται μια ολική γενική συντήρηση (overhaul) για τους τρεις κινητήρες του υποσταθμού ICE-1 κάθε 36.000 ώρες λειτουργίας τους, με βάση ένα καταστατικό συντήρησης που έχει κατασκευαστεί ανά συγκεκριμένες προβλέψεις από τους κατασκευαστές των μηχανών και συγκεκριμένα από την BWSC (Burmeister & Wain Scandinavian Contractor), εταιρεία που συνεργάζεται με την MITSUI-MAN B&W. Στον υποσταθμό ICE-1 πέρα από τη γενική συντήρηση που διενεργείται σε κάθε δίχρονο κινητήρα, δεν κρίνεται απαραίτητη η ενδιάμεση εκτέλεση οποιαδήποτε ενέργειας συντήρησης που να αφορά τον κινητήρα, μέχρι να συμπληρώσει 14.000 ώρες λειτουργίας, εκτός από κάποιους τυπικούς ελέγχους που γίνονται. Αντίθετα στον υποσταθμό των τετράχρονων κινητήρων, πέρα από τη γενική συντήρηση που διενεργείται κάθε 12.000 ώρες λειτουργίας τους, με βάση καταστατικού που εκδόθηκε από την εταιρεία WARTSILA, εκτελούνται διαδικασίες συντήρησης που αφορούν τον κινητήρα και τα επιμέρους στοιχεία του ανά συγκεκριμένα χρονικά διαστήματα άσχετα από την προγραμματισμένη γενική συντήρησή τους. Αυτό οφείλεται στο γεγονός ότι οι κινητήρες δίχρονου τύπου είναι απλούστεροι και αποδοτικότεροι συγκριτικά με τους κινητήρες τετράχρονου τύπου, γι’ αυτό και δεν απαιτείται κάποια άλλη ενέργεια συντήρησης πέρα από τη γενική προγραμματισμένη συντήρηση.

Όσο αφορά τα παρελκόμενα βοηθητικά στοιχεία (auxiliaries) που απαρτίζουν τις μηχανές, διενεργούνται προγραμματισμένες διαδικασίες συντήρησης ανά τακτά χρονικά διαστήματα, με το κάθε στοιχείο να απαιτεί ξεχωριστό καταστατικό διαχείρισης σε θέματα συντήρησης, εκτός και αν παρουσιαστεί κάποια απρόοπτη βλάβη, οπότε γίνεται άμεσα συντήρηση. Προγραμματισμένη γενική συντήρηση διενεργείται και για τις έξι μονάδες ατμοστροβίλων ξεχωριστά, υπό την εποπτεία των αντίστοιχων εταιρειών κατασκευής τους. Για το έτος 2017 είχε προγραμματιστεί
γενική συντήρηση που αφορά τη μονάδα ατμοστροβίλου με τον αριθμό δύο, τον Ιανουάριο με συνολική διάρκεια 69 μέρες.

Πέρα από τη γενική συντήρηση, για οποιαδήποτε ενέργεια που αφορά κατά κύριο λόγο κάποια επισκευή προγραμματισμένη ή απρόοπτη, ο υπεύθυνος μηχανικός βάρδιας, αφού πρώτα αξιολογήσει τη δεδομένη κατάσταση, εκδίδει το σχετικό πιστοποιητικό άδειας εκτέλεσης εργασίας. Ουσιαστικά είναι ένα επίσημο έγγραφο που χρησιμοποιείται για έλεγχο συγκεκριμένων τύπων δραστηριοτήτων, που εμπεριέχουν κινδύνους και εκτίμηση των κινδύνων αυτών. Συγκεκριμένα καθορίζονται οι εργασίες που πρέπει να γίνουν, οι απαραίτητες προφυλάξεις που πρέπει να παρθούν και κυρίως διασφαλίζεται ότι το σύστημα εργασίας θα είναι απόλυτα ασφαλές και ότι έχει γίνει διακοπή λειτουργίας ή απομόνωση των μηχανημάτων στα οποία θα διενεργηθούν οι δραστηριότητες επισκευής και συντήρησης. Επίσης το εξουσιοδοτημένο προσωπικό πρέπει να έχει εις γνώση τους κινδύνους και τα μέτρα ασφαλείας που απαιτούνται για την εκτέλεση της εργασίας. Το κάθε πιστοποιητικό έχει αριθμό άδειας, την τοποθεσία της δραστηριότητας και περιγραφή της. Με την υπογραφή του πιστοποιητικού, ο υπεύθυνος μηχανικός κρατά το αντίγραφο μέχρι την ολοκλήρωση της εργασίας, όπου και άρει την απομόνωση.

Εικόνα 3.1: Παράδειγμα πιστοποιητικού άδειας εκτέλεσης εργασίας
3.2 Γενική συντήρηση στην υπομονάδα ICE-1

3.2.1 Γενική αναφορά

Η πιο πρόσφατη γενική συντήρηση στην υπομονάδα ICE-1 και η μοναδική μέχρι σήμερα διενεργήθηκε κατά τα μέσα Φεβρουαρίου του 2012, με την επόμενη γενική συντήρηση να είναι προγραμματισμένη τον Οκτώβριο του 2017. Η γενική συντήρηση του ICE-1 προγραμματίστηκε μετά από 14000 ώρες λειτουργίας της μονάδας από τη στιγμή που εγκαταστάθηκε και τέθηκε σε λειτουργία. Την εποπτεία της συντήρησης ανέλαβε εξ ολοκλήρου η εταιρεία BWSC, λόγω της απειρίας του προσωπικού του σταθμού στέλνοντας αρμοδίους κινητήρων. Η επόμενη προγραμματισμένη συντήρηση του ICE-1 που είναι προγραμματισμένη στα μέσα Οκτώβριο του 2017 θα γίνει πάλι υπό την επίβλεψη τελετουργίας της BWSC, με το προσωπικό του σταθμού όμως να αναλαμβάνει περισσότερες αρμοδιότητες σε σχέση με την πρώτη γενική συντήρηση που διεξήχθη. Η μεγάλη μεσολάβηση της δεύτερης από την πρώτη γενική συντήρηση οφείλεται στο γεγονός ότι ολόκληρη η υπομονάδα ICE-1 τέθηκε εκτός λειτουργίας για αρκετά μεγάλο διάστημα, σχεδόν για ολόκληρο το 2013, λόγω των διεργασιών που πραγματοποιήθηκαν για την τοποθέτηση των σύγχρονων και πιο συμβατών καταλυτών με το περιβάλλον. Η λειτουργία κάθε δίχρονου κινητήρα εκτιμάται κατά μέσο όρο γύρω στις 6500 ώρες λειτουργίας ανά έτος, που αντιστοιχεί σε 18 ώρες λειτουργίας ανά ημέρα.

Η BWSC εξέδωσε αναλυτική έκθεση σχετικά με την πορεία της συντήρησης, το προσωπικό που διατέθηκε και τα αποτελέσματα που προέκυψαν. Αρχικά έγινε μια συνοπτική αναφορά από την BWSC με γενικά στοιχεία της συντήρησης. Έγινε καταγραφή της εργασιακής διάρκειας της συντήρησης των τριών δίχρονων κινητήρων, καταγραφή του εξοπλισμού συντήρησης, κατανομή των εργασιών και αποτυπωμάτων γενικών αποτελεσμάτων που έγιναν με το πέρας της συντήρησης. Στο κυρίως στάδιο της αναφοράς καταγράφηκαν εισήγηση της BWSC επεξεργάζοντας τις κατανομή των εργασιών και έγινε αναλυτική περιγραφή της κάθε διεργασίας συντήρησης για κάθε κομμάτι του εξοπλισμού του κινητήρα. Στο τέλος της αναφοράς καταγράφηκαν εισήγησεις από την BWSC προς τους υπεύθυνους του ηλεκτροπαραγωγού σταθμού σε θέματα συντήρησης που αφορούν τους τρεις δίχρονους κινητήρες.
Η συντήρηση αφορούσε μόνο την υπομονάδα ICE-1 του σταθμού Δεκέλειας. Ο συνολικός χρόνος που διατέθηκε για τη γενική συντήρηση των κινητήρων ήταν δώδεκα μέρες και επιπλέον δύο μέρες για τον έλεγχο της λειτουργίας των μηχανών και επιμελή διόρθωση. Έγινε καταγραφή της ακριβής ώρας και ημερομηνίας που ξεκίνησε και ολοκληρώθηκε η συντήρηση, καθώς και ακριβής ώρα επαναλειτουργίας του κάθε κινητήρα.

Κατά τη διάρκεια της συντήρησης, διαβιβαζόταν μια ημερήσια έκθεση στη διεύθυνση του σταθμού, για την ενημέρωσή τους σχετικά με την εξέλιξη και την πρόοδο της συντήρησης. Η επικοινωνία με τα διευθυντικά στελέχη της ΑΗΚ γινόταν μέσω του υπεύθυνου τεχνίτη και του βοηθού μηχανικού ημερήσια βάρδια του σταθμού.

Με την ολοκλήρωση της συντήρησης, καταγράφηκε μια πλήρης έκθεση με όλες τις εργασίες που πραγματοποιήθηκαν, συμπεριλαμβανομένων όλων των μετρήσεων, καθώς και τις αποδόσεις σε φορτίο του κινητήρα πριν και μετά τη γενική συντήρηση. Επισυνάφτηκε επίσης πρόγραμμα μείωσης της λίπανσης και των δακτυλίων για τη λειτουργία τους στο νέο έμβολο.

Σύμφωνα με την BWSC τα εξαρτήματα που αφαιρέθηκαν από τον κινητήρα βρέθηκαν σε πολύ καλή κατάσταση, με ελάχιστη φθορά σε κάποια χιτώνια του κυλίνδρου, για τα οποία θα δοθεί εκτενής αναφορά στη συνέχεια. Όλα τα στοιχεία που αφαιρέθηκαν από τον κινητήρα καθαρίστηκαν, μετρήθηκαν σύμφωνα με κατευθυντήριες γραμμές βιβλίου οδηγιών και επιθεωρήθηκαν έτσι ώστε να είναι σε θέση να διαρκέσουν μέχρι την επόμενη γενική επισκευή. Όσα τμήματα του κινητήρα βρέθηκαν φθαρμένα, πάνω από τα συνιστώμενα όρια, αντικαταστάθηκαν με αντίστοιχα ανταλλακτικά. Επίσης, όλες οι μετρήσεις και βαθμονομήσεις που λήφθηκαν, καταγράφηκαν τόσο σε ηλεκτρονική όσο και σε έντυπη μορφή.

3.2.2 Περιγραφή εξοπλισμού

Τα στοιχεία που αφορούν τους κατασκευαστές, τον τύπο και κωδικούς που αφορούν τους δίχρονους κινητήρες μαζί με κάποια βοηθητικά στοιχεία για τη λειτουργία τους δίνονται πιο κάτω:

- Κατασκευαστής κινητήρα ντίζελ: Mitsui - MAN B&W
- Τύπος κινητήρα ντίζελ: 12K50MC-S
3.2.3 Προσωπικό και καταμερισμός εργασιών

Συνολικά για τις ανάγκες της συντήρησης η BWSC διέθεσε από δύο θυγατρικές εταιρείες της, την BWSC Lanka και την APOM, δύο επόπτες, ένα υπεύθυνο μηχανικό και ένα μηχανολόγο καθώς επίσης και δέκα μηχανικούς εγκατάστασης - τεχνικούς. Από την άλλη ο σταθμός Δεκέλειας της ΑΗΚ, παρείχε σημαντική βοήθεια σε τεχνικούς και βοηθούς τεχνικούς για την εκπλήρωση των καθηκόντων που απαιτούνταν. Επιπρόσθετα, ο επί τόπου μηχανικός βάρδιας του ηλεκτροπαραγωγού σταθμού είχε καθήκοντα επόπτη. Ωστόσο λόγω του μεγάλου αριθμού τεχνικών που παρευρέθηκαν κατά τη διάρκεια της γενικής συντήρησης και λόγω της συνεχής εναλλαγής τους, ήταν δύσκολη η καταγραφή του ακριβούς αριθμού τεχνικών που διατέθηκαν. Βασικός στόχος ήταν να αποκτήσουν εφόσον ήταν εφικτό, όλοι οι εργαζόμενοι εμπειρία σε θέματα γενικής συντήρησης και επισκευών, διότι η πρώτη μια τέτοια διαδικασία γενικής συντήρησης στις μηχανές εσωτερικής καύσης γινόταν για πρώτη φορά στο σταθμό. Επίσης ο σταθμός διέθεσε πέντε καθαριστές για κάθε βάρδια, υπό την εποπτεία της BWSC.

Οι εργασίες κατανεμήθηκαν σε δύο βάρδιες με διάρκεια δέκα ωρών για την καθεμιά. Η πρώτη βάρδια (βάρδια Α) ξεκινούσε από τις 06:00 μέχρι και τις 14:00 ενώ η δεύτερη βάρδια (βάρδια Β) από 14:00 μέχρι τις 24:00. Συχνά πραγματοποιήθηκε επικάλυψη δύο ωρών μεταξύ των βαρδιών για σκοπούς ευκολότερης ροής και παράδοσης των εργασιών. Συνολικά υπήρχε μια μέρα
ελεύθερη για κάθε εργαζόμενο κατά τη διάρκεια της εβδομάδας, έτσι ώστε να υπάρχει χρόνος για
ανάπαυση κατά τη διάρκεια διεξαγωγής της γενικής συντήρησης.

Οπως έχει αναφερθεί, λόγω της απειρίας του προσωπικού στο σταθμό, τη γενική εποπτεία
tης εκτέλεσης των διαδικασιών συντήρησης ανέλαβε η BWSC. Ωστόσο κάποιες εργασίες
ανατέθηκαν εξ ολοκλήρου στο προσωπικό του σταθμού πάντα υπό την παρακολούθηση των
υπεύθυνων μηχανικών της BWSC, όπως η γενική συντήρηση των αντλιών καυσίμου, η λείανση
tων χιτώνιων των κυλινδρών και η κατεργασία των θέσεων που εδράζονται οι βαλβίδες εξαγωγής.

Συγκεκριμένα διευθετήθηκε η διάθεση τριών τεχνικών και τριών βοηθών από τον
ηλεκτροπαραγωγό σταθμό για τη γενική συντήρηση των 12 αντλιών καυσίμου της κάθε μηχανής
ξεχωριστά, υπό τη στενή εποπτεία μέλους του προσωπικού της BWSC. Η συνολική διάρκεια των
εργασιών διήρκησε οκτώ ημέρες εργασίας, όπως φαίνεται και στο σχετικό πίνακα και
dιεκπεραιώθηκαν κατά τη διάρκεια της ημέρας. Αμεσος στόχος ήταν η παροχή της δυνατότητας
στους υπαλλήλους του σταθμού να εκπαιδευτούν σε θέματα συντήρησης που αφορούν τις γενικές
αντλίες καυσίμου. Για αυτό το λόγο, η διεύθυνση του σταθμού εκμεταλλεύθηκε την ευκαιρία να
εκπαιδεύσει σχεδόν όλους τους τεχνίτες που είχαν στη διάθεση της για αυτή τη δουλειά. Ωστόσο
οι υπεύθυνοι του σταθμού θεώρησαν ότι έπρεπε κάποιοι τεχνίτες να απασχοληθούν και με άλλες
εργασίες επισκευής του κινητήρα και των παραπλήσιων εξαρτημάτων του, για αυτό και δόθηκε
εντολή να επιταχυνθούν οι διαδικασίες επαναδιόρθωσης των αντλιών καυσίμου. Έτσι επισπεύσθηκαν ακόμα πέντε τεχνικοί και βοηθοί ανά τακτικά χρονικά διαστήματα στην
ολοκλήρωση των επισκευών των αντλιών καυσίμου. Ως αποτέλεσμα, η συγκεκριμένη εργασία
συντήρησης πραγματοποιήθηκε νωρίτερα από την προβλεπόμενη ημερομηνία ολοκλήρωσης.

Επίσης, οι εξουσιοδοτημένοι τεχνίτες της ΑΗΚ ανέλαβαν τη γενική συντήρηση των
βαλβίδων καυσίμου που είχαν αφαιρεθεί από τον κινητήρα, το καθάρισμα των επιμέρους
στοιχείων τους, τον έλεγχο και τη ρύθμιση της σωστής λειτουργίας και πίεσης ανοίγματός τους.

Όσο αφορά τη λείανση χιτώνιων, διεκπεραίωθηκαν δύο μηχανικοί από το σταθμό κατά τη
dιάρκεια της πρωινής βάρδιας, για να φέρουν εις πέρας τις εργασίες χάραξης, τροχίσματος και
λείανσης των χιτώνιων των κυλινδρών υπό την εποπτεία της BWSC. Τη νυχτερινή βάρδια για την
εκτέλεση των εργασιών λείανσης στα κυλινδρικά χιτώνια ανέλαβε μέλος του προσωπικού της
BWSC.
Ανάλογα με τη διαθέσιμότητα τους, ένας ή δύο μηχανικοί χρησιμοποιήθηκαν για την κατεργασία και επιδιόρθωση των καθισμάτων των βαλβίδων εξαγωγής και των ατράκτων τους, κατά τη διάρκεια της πρωινής βάρδιας, υπό την εποπτεία της BWSC. Υπήρχαν φορές που εργάτες εργάστηκαν επιπλέον ώρες για να καλύψουν εργασίες που αφορούσαν την κατεργασία του πίσω μέρους των θέσεων των βαλβίδων εξαγωγής. Ανά περιόδους ένας βοηθός διατέθηκε από την BWSC κατά τη νυχτερινή βάρδια, προκειμένου να επιδιορθώσει τα καθίσματα και τις ατράκτους των βαλβίδων εξαγωγής.

Να σημειωθεί ότι η παροχή όλων των αναλώσιμων ανταλλακτικών που απαιτούνταν για την επισκευή του κινητήρα και των επιμέρους στοιχείων του ήταν αποκλειστική ευθύνη του σταθμού Δεκέλειας.

Σύμφωνα με τον γενικό οργανωτικό πίνακα που εξέδωσε η BWSC όλες οι διεργασίες της γενικής συντήρησης διήρκησαν δεκατέσσερις εργάσιμες μέρες χωρίς να περιλαμβάνονται οι μέρες του σαββατοκύριακου. Ακολούθως θα δοθούν αναλυτικά στοιχεία των διεργασιών συντήρησης που έλαβαν χώρα σύμφωνα με την κατάλληλη αλληλουχία και διαδοχή των εργασιών αυτών και τον καταμερισμό τους στοιχείων της πρωινής βάρδιας, τους τεχνικούς της νυχτερινής βάρδιας και τους βοηθούς – καθαριστές, σύμφωνα με το πρόγραμμα Microsoft Project 2010, έτσι ώστε να μελετηθεί η περίπτωση εξοικονόμησης χρόνου της γενικής συντήρησης (Βλέπε Παράρτημα - Πίνακας 3-1)

Στο πρόγραμμα θεωρήθηκαν 20 εργάσιμες ώρες για κάθε ημέρα με τη σύμπτυξη των δύο βαρδιών και ημερομηνία έναρξης η 13/2/2012. Παρατίθενται περιγραφή των εργασιών, διάρκεια των εργατοωρών κάθε εργασίας (work), οι ώρες εκτέλεσης κάθε εργασίας (duration), η μέρα που ξεκίνησε η εργασία (start), η μέρα που τελείωσε (finish) και η ειδικότητα με τον αριθμό των εργατών που απαιτήθηκαν για την εκτέλεση της κάθε εργασίας (resource names). Το πρόγραμμα χωρίστηκε σε επτά βασικά έργα με τα υποέργα τους.

Με βάση τα δεδομένα για την περιγραφή και διάρκεια των εργασιών συντήρησης, κατασκευάστηκε το διάγραμμα Gantt, όπου φαίνεται ο ακριβής αριθμός ημερών που απαιτούνται για την ολοκλήρωση των διεργασιών συντήρησης και ο καταμερισμός τους στο αρμόδιο τμήμα.
Σύμφωνα με το διάγραμμα Gantt το οποίο προέκυψε, αλλά και από τον πίνακα 3.1, οι
dιεργασίες συντήρησης είχαν συνολική διάρκεια 15 μέρες, αφού τελείωσαν στις 2/3/2012. Το
αποτέλεσμα αυτό έρχεται σύμφωνο με το οργανόγραμμα που διατέθηκε στο σταθμό από την
BWSC το οποίο είχε διάρκεια 14 μέρες. Η μείωση αυτή οφείλεται λόγω της σύμπτυξης κάποιων
dιεργασιών και της ενασχόλησης περισσότερων εργατών από τον προβλεπόμενο αριθμό για τη
διεκπεραίωση ορισμένων εργασιών, για λόγους εξειδίκευσης και απόκτησης περαιτέρω εμπειρίας
3.2.4 Περιγραφή εργασιών γενικής συντήρησης

Στην παρούσα ενότητα θα δοθεί περιγραφή των διαδικασιών συντήρησης που λήφθηκαν στους κινητήρες και τα επιμέρους στοιχεία τους, με τη σειρά την οποία πρέπει να γίνονται, σύμφωνα με το ειδικό εγχειρίδιο της μονάδας ICE-1. Όπως έχει αναφερθεί η γενική επισκευή κάθε εξαρτήματος περιλαμβάνει αποσυναρμολόγησή του, καθαρισμό, συνεχής επιθεώρηση, μετρήσεις και αντικαταστάσεις σφραγίσεων και φθαρμένων στοιχείων όταν κρίνεται απαραίτητο.

Συντήρηση στα καπάκια και στις βαλβίδες κυλίνδρων

- Αφαίρεση των κυλίνδρων καλυμμάτων από τον κινητήρα και μεταφορά τους στο χώρο φόρτωσης
- Καθαρισμός και επιθεώρηση του χώρου ψύξης του νερού μετά την αφαίρεση των ψυκτικών μανδυών.
- Επιθεώρηση και έλεγχος ρωγμών όλων των καλυμμάτων των κυλίνδρων (μη καταστρεπτικοί έλεγχοι - έλεγχος χρωμάτων)
- Επιθεώρηση και λείανση όλων των επιφανειών στεγανοποίησης στα καλύμματα των κυλίνδρων για όλες τις βαλβίδες.
- Αποσυναρμολόγηση και γενική συντήρηση βαλβίδων καυσίμου.
- Αποσυναρμολόγηση και γενική επισκευή όλων των βαλβίδων εκκίνησης.
- Αποσυναρμολόγηση και γενική επισκευή όλων των βαλβίδων ένδειξης και των βαλβίδων ασφαλείας.
- Επιθεώρηση του θαλάμου καύσης για κάψιμο ή ζημιές.
- Εγκατάσταση συστήματος ψύξης με νέους δακτυλίους O.
- Επανεγκατάσταση των επισκευασμένων βαλβίδων στα καπάκια των κυλίνδρων.
- Εγκατάσταση κυλινδρικών καλυμμάτων στον κινητήρα.

Γενική επισκευή βαλβίδων εξαγωγής

- Αποσυναρμολόγηση όλων των βαλβίδων από τα καλύμματα των κυλίνδρων και καθάρισμα όλων των εξαρτημάτων.
• Επιθεώρηση βαλβίδων και καθισμάτων, έλεγχος διέλευσης και αντισειρίων από τις βαλβίδες εξαγωγής και έλεγχος των πτερυγίων για φθορά και σωστή τοποθέτησή τους.
• Λείανση όλων των καθισμάτων των βαλβίδων εξαγωγής και των ατράκτων.
• Μετρήσεις όλων των αξόνων και των καθισμάτων μετά τη λείανση.
• Έλεγχος των καθισμάτων και των ατράκτων για ρωγμές με τη μέθοδο ελέγχου χρώματος.
• Αντικατάσταση ελαττωματικών/φθαρμένων καθισμάτων ή ατράκτων βαλβίδων.
• Γενική επισκευή του υδραυλικού ενεργοποιητή της βαλβίδας εξαγωγής - μέτρηση της φθοράς του κυλινδρικού δακτυλίου και των δαχτυλιδίων εμβόλου.
• Αντικατάσταση όλων των στεγανοποιητικών και γενική επισκευή του πνευματικού εμβόλου.
• Μέτρηση της οπής του πνευματικού εμβόλου και του δακτυλίου οδηγού ατράκτου.
• Γενική επισκευή των βαλβίδων εξαγωγής υψηλής πίεσης.

Γενική συντήρηση εμβόλων

• Αφαίρεση εμβόλων από τον κινητήρα και μεταφορά τους στο χώρο φόρτωσης.
• Επιθεώρηση των εμβόλων και των δακτυλίων πριν την αφαίρεση των δακτυλίων από τα εμβόλα.
• Καθαρισμός και έλεγχος πίεσης των κορών στο πάνω μέρος των εμβόλων και αντικατάσταση της κορώνας εμβόλου εφόσον απαιτείται.
• Καθαρισμός, επιθεώρηση και μέτρηση του καψίματος της κορώνας εμβόλου, του ύψους του αυλακιού δακτυλίου και του πάχους του στρώματος χρωμίου.
• Καθαρισμός, επιθεώρηση και μέτρηση των ράβδων εμβόλου.
• Γενική επισκευή των κιβωτίων πλήρωσης εμβόλου, αντικατάσταση των δακτυλίων αποξέσεως, των δακτυλίων στεγανοποίησης και λαμαριών σε δακτυλίους αποξέσεως όταν είναι απαραίτητο.
• Επιθεώρηση της περιοχής τοποθέτησης του δακτυλίου του περιβλήματος στα κιβώτια πλήρωσης και αντικατάστασή των περιβλημάτων όπου έχει παρατηρηθεί φθορά με ανταλλακτικά, όταν απαιτείται.
• Έλεγχος των ελατηρίων στο κάθε κιβώτιο πλήρωσης και μέτρηση του μήκους υπό φορτίο με βάση τις οδηγίες στο εγχειρίδιο.
• Μέτρηση των αποστάσεων μεταξύ των δακτυλίων στεγανοποίησης και των δακτυλίων αποξέσεως με τα περιβλήματα των κιβωτίων πλήρωσης.
• Εισαγωγή αριθμόν αναγνώρισης στις κορώνες, στα κουτιά πλήρωσης και στις εμβολοφόρους ράβδους για λόγους ταυτοποίησης των εξαρτημάτων.
• Εγκατάσταση εμβόλων στον κινητήρα.

Γενική επισκευή κυλινδρικών χιτωνίων

• Αφαίρεση των κυλινδρικών επενδύσεων (χιτωνίων) από τον κινητήρα και μεταφορά τους στο χώρο φόρτωσης.
• Επιθεώρηση των επιφανειών κίνησης (τοιχώματα) των χιτωνίων πριν από τον καθαρισμό τους.
• Μέτρηση και καταγραφή της κυλινδρικής οπής των χιτωνίων πριν και μετά τη λείανσή.
• Τακτικός ελεγχός των χιτωνίων κατά τη λείανσή τους. Επιθεώρηση και μέτρηση της τραχύτητας των επιφανειών των χιτωνίων μετά τη λείανσή.
• Καθαρισμός του χώρου νερού ψύξης τόσο των επενδύσεων όσο και των μανδυών ψύξης.
• Εκτενής καθαρισμός των χιτωνίων μετά τη λείανσή.
• Αντικατάσταση στεγανοποιητικών δακτυλίων για τους μανδύες ψύξης του νερού και εγκατάστασή τους.
• Μέτρηση των δακτυλίων εμβόλου μετά τον εκτενή καθαρισμό τους.
• Ταυτοποίηση του αριθμού ταυτότητας των χιτωνίων με τους αρίθμους αναγνώρισης των δακτυλίων κορώνες για ομαδοποίησή τους και σωστή επανεγκατάσταση.
• Καθαρισμός των πτερυγίων του λιπαντήρα κύλισης, φυσώντας με αέρα και τοποθετώντας τα στα κυλινδρικά χιτώνια.
• Εγκατάσταση χιτωνίων στους κινητήρες.
Εικόνα 3.2: Αφαίρεση χιτωνίων κυλίνδρου από τον πρώτο κινητήρα για μεταφορά τους στο χώρο φόρτωσης

Αντικατάσταση αντλιών καυσίμου

- Αφαίρεση των αντλιών καυσίμου από τον κάθε κινητήρα και μεταφορά τους στο χώρο φόρτωσης.
- Αποσυναρμολόγηση τους κυλινδρικά καλύμματα, καθαρισμός και επισκευή τους.
- Γενική επισκευή όλων των βαλβίδων αναρρόφησης και διάτρησης και επανασυναρμολόγηση τους με νέες σφραγίσεις.
- Γενική επισκευή όλων των αναρτήσεων.
- Λείανση των καθισμάτων αντλιών υψηλής πίεσης, όταν είναι απαραίτητο.
- Γενική επισκευή όλων των εμβόλων, βαρελιών και VIT.
- Επιθεώρηση του εμβόλου και των διακλαδώσεων του βαρελιού για σημάδια διάβρωσης / σπηλαίωσης.
• Επιθεώρηση βιδών βύσματος για σημάνσεις αυλακώσεων.
• Γενική επισκευή των καπακιών στεγανοποίησης και συναρμολόγηση όλων των αντλιών καυσίμου.
• Επιθεώρηση του οδηγού κυλίνδρου αντλίας # 1 για σκοπούς εκπαίδευσης.
• Εγκατάσταση όλων των αντλιών καυσίμου στον κινητήρα.
• Ρύθμιση του δείκτη VIT και του δείκτη αντλίας καυσίμου για την επίτευξη ισορροπίας του κινητήρα.

Έλεγχος στροφάλου

• Καταγραφή παραμόρφωσης στροφαλοφόρου άξονα, πριν και μετά την επισκευή.
• Επιθεώρηση όλων των διατάξεων ασφάλισης των εξαρτημάτων μετά τη συντήρηση.
• Καθαρισμός και επιθεώρηση του στροφαλοθαλάμου.

Δέκτες αέρα

• Καθαρισμός και επιθεώρηση του δέκτη αέρα.
• Καθαρισμός και έλεγχος των χώρων προσωρινής αποθήκευσης.
• Επιθεώρηση των βαλβίδων αντεπιστροφής του δέκτη αέρα.

Ψύκτης νερού

• Αντικατάσταση του ψυγείου αέρα τροφοδοσίας με τον αριθμό 4 μετά την τοποθέτηση των τεμαχίων απόστασης και των μακρύτερων βιδών σύμφωνα με το εγχειρίδιο συντήρησης.
Ρύθμιση λιπαντικών κυλίνδρων

- Έλεγχος και ρύθμιση των λιπαντικών για να επιτευχθεί ο σωστός ρυθμός τροφοδοσίας κατά τη λειτουργία.

Καθαρισμός του κινητήρα και των εγκαταστάσεων ηλεκτρικού ρεύματος

- Καθαρισμός του κινητήρα και των εγκαταστάσεων ροής του ηλεκτρικού ρεύματος για παρουσίαση της εγκατάστασης σε καθαρή κατάσταση μετά την ολοκλήρωση των εργασιών συντήρησης.

3.2.5 Αναλυτική περιγραφή και παρατηρήσεις κατά τη συντήρηση των διάφορων εξαρτημάτων

Η σειρά και οι διαδικασίες εκτέλεσης των εργασιών πραγματοποιήθηκαν σύμφωνα με τις οδηγίες του εγχειρίδιου συντήρησης για τη μονάδα του ICE-1, όπως περιγράφηκαν στην προηγούμενη ενότητα. Ακολουθεί ανάλυση για τις διαδικασίες συντήρησης που πραγματοποιήθηκαν για κάθε επιμέρους εξάρτημα των τριών κινητήρων.

3.2.5.1 Κυλινδρικά Καλύμματα

Αρχικά ξεκίνησαν οι διαδικασίες συντήρησης για τα καλύμματα (καπάκια) των δώδεκα κυλίνδρων που αντιστοιχούν σε κάθε κινητήρα. Όλα τα καλύμματα κυλίνδρων αποσυναρμολογήθηκαν από τους κινητήρες αφού πρώτα αφαιρέθηκαν όλες οι βαλβίδες από πάνω τους με την πραγματοποίηση λεπτομερούς καθαρισμού και επιθεώρησης τους. Έπειτα αφαιρέθηκαν οι τέσσερις βίδες που ασφαλίζουν το μανδύα ψύξης του νερού με τα κυλινδρικά καπάκια για απελευθέρωση των θηκών ψύξης νερού, έτσι ώστε να μπορέσουν να καθαριστούν. Τα κυλινδρικά καπάκια ανυψώθηκαν με τη βοήθεια γάντζου, για να γίνει μια γρήγορη επιθεώρηση στους χώρους καύσης τους, όπου δεν παρατηρήθηκαν οποιαδήποτε ανωμαλία. Στη συνέχεια μεταφέρθηκαν στο χώρο συντήρησης για πιο προσεκτική εξέταση και διόρθωση.
Σχήμα 3.1: a. Αποσυναρμολόγηση βαλβίδων από τον καπάκι του κυλίνδρου και β. Αφαίρεση μανδύα ψύξης νερού

Επειτά πραγματοποιήθηκε δοκιμή NDT, με διείσδυση χρωστικής ουσίας στην περιοχή σφράγισης του ψυκτικού καλύμματος όλων των κυλινδρικών καλυμμάτων, χωρίς να ανιχνευθούν ρωγμές. Οι οπές που τοποθετούνται οι βαλβίδες καυσίμου καθαρίστηκαν και παρατηρήθηκαν μικρά κομμάτια από μέταλλο κοντά στις οπές, σε μερικά από τα κυλινδρικά καλύμματα. Αυτά εξομαλύνθηκαν με λείανση, με τη χρήση κοπής άνθρακα. Ακολούθως ελέγχθηκαν οι επιφάνειες των εδράνων των βαλβίδων και αποκαταστάθηκαν με περιτύλιξη. Δεν εμφανίστηκαν σημεία που να υποδηλώνουν κάποια βλάβη ή ζημιά σε οποιαδήποτε από τις έδρες βαλβίδων. Επίσης καθαρίστηκαν οι διαδρομές ψύξης από τις οπές των ψυκτικών καλύμματων και αποκαταστάθηκαν με καλύμματα από σιδήρο. Ακολούθησε πίνακας με τα εργαλεία και τα ανταλλακτικά που χρησιμοποιήθηκαν κατά τη διαδικασία συντήρησης των κυλινδρικών καπακιών.
Σχήμα 3.2: Εργαλεία που χρησιμοποιήθηκαν για τη συντήρηση των κυλινδρικών καλυμάτων

<table>
<thead>
<tr>
<th>Αρ. Στοιχείου</th>
<th>Περιγραφή</th>
<th>Περιγραφή εργαλείων που χρησιμοποιήθηκαν για τη συντήρηση των κυλινδρικών καλυμάτων</th>
</tr>
</thead>
<tbody>
<tr>
<td>015</td>
<td>Υδραυλικά εργαλεία για κυλινδρικό κάλυμμα</td>
<td>3.2.5.2 Εγχυτήρες καυσίμου</td>
</tr>
<tr>
<td>027</td>
<td>Πλήρης υδραυλική υποδοχή</td>
<td>Όλα τα μπεκ (εγχυτήρες) ψεκασμού καυσίμου μεταφέρθηκαν στο εργαστήριο του ηλεκτροπαραγωγού σταθμού για προσεκτική εξέταση και διόρθωση. Το προσωπικό της BWSC ανέλαβε την ευθύνη για τη συντήρηση των βαλβίδων καυσίμου γιατί το προσωπικό του σταθμού ήταν απασχολημένο για την προετοιμασία της γενικής επισκευής της μονάδας ICE 2 (ανεξάρτητη από τη γενική συντήρηση της ICE 1) και έγινε εκτεταμένος έλεγχος πίεσης τους. Σύμφωνα με την έκθεση της BWSC, η ρυθμισμένη βαλβίδα καυσίμου με τον αριθμό 3 η οποία έχει επισκευαστεί και διατηρηθεί σε κατάσταση αναμονής, τοποθετήθηκε στα κυλινδρικά καλύμματα με νέους δακτύλιους O. Η βαλβίδα καυσίμου με τον αριθμό 1 που είχε αφαιρεθεί από τον πρώτο κινητήρα ντίζελ συντηρήθηκε πλήρως και κρατήθηκε ως ανταλλακτικό μετά από έλεγχο των πιέσεων κατά το άνοιγμά της. Αξίζει να σημειωθεί ότι οι βαλβίδες καυσίμου είναι εφοδιασμένες με ακροφύσια</td>
</tr>
<tr>
<td>040</td>
<td>Δακτύλιος O με εφεδρικό</td>
<td></td>
</tr>
<tr>
<td>052</td>
<td>Δακτύλιος O με εφεδρικό</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Κάλυμμα για οπή βαλβίδων εξαγωγής</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Κέντρο κόνου για τους κοχλίες του κυλίνδρου</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>Κέντρο κόνου για τους κοχλίες των βαλβίδων εξαγωγής</td>
<td></td>
</tr>
</tbody>
</table>

3.2.5.2 Εγχυτήρες καυσίμου
τύπου σύνθεσης HIP και μπορούν να τρέξουν μέχρι 16000 ώρες λειτουργίας πριν από την απόσυρσή τους.

3.5.2.3 Βαλβίδες αέρα εκκίνησης

Αφού αφαιρέθηκαν από τα καλύμματα των κυλίνδρων, οι βαλβίδες εκκίνησης αέρα αποσυναρμολόγηθηκαν, καθαρίστηκαν και επιθεωρήθηκαν. Για την αποσυναρμολόγησή τους, πρώτα εξεπάλευσαν οι βίδες στερέωσης του επάνω καλύμματος με τα παξιμάδια και στη συνέχεια ο μανδύας ψύξης. Έπειτα αφαιρέθηκε το έμβολο, ο σωλήνας απόστασης, το ελατήριο της βαλβίδας, το προστατευτικό χιτώνιο και ο δακτύλιος. Για να μείνει η ζητούμενη βαλβίδα αέρα εκκίνησης και να καθαριστεί. Δεν παρατηρήθηκαν ζημιές λόγω εμφύσησης.

Σχήμα 3.3: Αποσυναρμολόγηση της βαλβίδας αέρα εκκίνησης.

Στη συνέχεια έγινε λείανση των εδράνων των βαλβίδων με τη χρήση δακτυλίου λείανσης, αφού πρώτα έγινε επάλειψη τους με πάστας λείανσης. Επίσης έγινε λίπανση σε όλα τα εσωτερικά μέρη των εδράνων (επιφάνειες ολίσθησης). Οι επιφάνειες στεγανοποίησης συγκολλήθηκαν μαζί για αποκατάσταση μιας καλής συνολικής επιφάνειας στεγανοποίησης. Οι βαλβίδες συναρμολογήθηκαν με νέα παρεμβύσματα (ειδικά δακτυλιοειδή βύσματα) και στεγανοπούσεις ανάλογα με τις ανάγκες τους και τοποθετήθηκαν στα καλύμματα των κυλίνδρων. Ολες οι βαλβίδες ήταν σφραγισμένες με αρθρούς ταυτότητας. Τέλος επανατοποθετήθηκαν όλα τα κομμάτια που είχαν αφαιρεθεί προηγουμένως μαζί με νέους δακτυλίους Ο και νέα φλάντζα.
3.2.5.4 Στρόφιγγες ένδειξης

Μετά την αφαίρεσή τους από τα καλύμματα των κυλίνδρων, οι στρόφιγγες ένδειξης (βάνες) αποσυναρμολογήθηκαν, καθαρίστηκαν και επιθεωρήθηκαν χωρίς να παρατηρηθεί οποιαδήποτε ζημία λόγω εμφύσησης ή από άλλους παράγοντες. Οι σφραγίσεις των επιφανειών συγκολλήθηκαν μεταξύ τους για επίτευξη μιας καλής επιφάνειας στεγανοποίησης. Οι στρόφιγγες συναρμολογήθηκαν με νέα παρεμβύσματα και στεγανοποιήσεις, ανάλογα με τις ανάγκες τους και συναρμολογήθηκαν στα κυλινδρικά καπάκια.

3.2.5.5 Βαλβίδες ασφαλείας

Μετά την αφαίρεσή τους από τα καλύμματα των κυλίνδρων, οι βαλβίδες ασφαλείας αποσυναρμολογήθηκαν, καθαρίστηκαν και επιθεωρήθηκαν. Ούτε σε αυτή την περίπτωση δεν σημειώθηκαν ζημιές λόγω εμφύσησης. Οι σφραγισμένες επιφάνειες συναρμολογήθηκαν με νέες φλάντζες και σφραγίδες όπου ήταν απαραίτητο και η πίεση ανοίγματος στις βαλβίδες ρυθμίστηκε στα 200 +/- 5 bar. Προηγουμένως οι βαλβίδες ασφαλείας τοποθετήθηκαν σε συσκευή ελέγχου πίεσης η οποία συνδέεται με αντλία υψηλής πίεσης για έλεγχο της πίεσης ανοίγματος. Τέλος, επανασυναρμολογήθηκαν για να είναι έτοιμες για τη σύνδεσή τους με τις βαλβίδες ένδειξης.

![Σχήμα 3.4: Βαλβίδα ασφαλείας και συσκευή ελέγχου πίεσης ανοίγματος](image.png)

3.2.5.6 Βαλβίδες εξαγωγής
Για την αφαίρεση των βαλβίδων εξαγωγής από τα κυλινδρικά καλύμματα, αρχικά έπρεπε να κλείσει η είσοδος και η έξοδος του νερού ψύξης για να βγουν έξω οι βαλβίδες εξαγωγής. Στη συνέχεια αποσυνδέθηκαν ο σωλήνας υψηλής πίεσης που είναι υπεύθυνος για την ενεργοποίηση της υδραυλικής βαλβίδας, ο σωλήνας εξαγωγής του νερού ψύξης και ο σωλήνας λαδίου. Επίσης, αφαιρέθηκαν όλες οι βίδες του νερού ψύξης που εισάγεται προς την πλευρά των βαλβίδων εξαγωγής και το περίβλημα της πλάκας με μόνωση. Μετά, αφαιρέθηκαν τα προστατευτικά καπάκια από τις βαλβίδες και τοποθετήθηκαν τέσσερα υδραυλικά βύσματα, έτσι ώστε να συνδεθούν οι αντλίες ψηλής πίεσης στις υποδοχές μέσω μπλοκ διανομέα. Με αυτό τον τρόπο επιτεύχθηκε εξαέρωση του υδραυλικού συστήματος. Τέλος, αφού πρώτα αφαιρέθηκαν τα παξιμάδια, η βαλβίδα τοποθετήθηκε σε ανυψωτικό γάντζο έτσι ώστε να αφαιρεθούν με ευκολία οι βαλβίδες εξαγωγής.

![Σχήμα 3.5: Εξαέρωση υδραυλικού συστήματος για αποσυναρμολόγηση των βαλβίδων εξαγωγής](image)

Metá την αποσυναρμολόγησή τους, οι βαλβίδες εξαγωγής τοποθετήθηκαν σε ειδική πλατφόρμα για λεπτομερή καθαρισμό και επιθεώρησή τους για τυχόν ζημιές. Αρχικά έγινε αφαίρεση του κυλίνδρου λαδιού και τοποθέτηση του σε ξύλινη βάση, έτσι ώστε να υπάρχει πρόσβαση στις οπές των βυσμάτων του στομίου, για να καθαριστούν. Έπειτα αφαιρέθηκαν κατά σειρά οι δακτύλιοι Ο, οι σωλήνες του υδραυλικού συστήματος και οι σωλήνες υψηλής πίεσης. Όχι υπήρχε οποιαδήποτε ζημιά στον άξονα, οπότε δεν έγινε ισχυρή έλεγχος στην διαμέτρο της οπής του κυλίνδρου λαδιού.

Έγινε ελέγχος για την καθαρότητα των άξονων και στα εδάφη των βαλβίδων, χωρίς να παρατηρηθεί οποιαδήποτε ζημιά. Ακολούθως αφαιρέθηκαν οι δακτύλιοι καθαρισμούς, η φλάντζα και η φιάλη, για να ελέγχεται καθαρότητα της οπής του κυλίνδρου λαδιού. Έγινε ελέγχος για την καθαρότητα των άξονων και στα εδάφη των βαλβίδων, χωρίς να παρατηρηθεί οποιαδήποτε ζημιά. Επίσης μερικά μικρά σημάδια βρέθηκαν σε όλους τους
άξονες των βαλβίδων, τα οποία όμως θεωρήθηκαν αποδεκτά και ως εκ τούτου οι άξονες των βαλβίδων χρησιμοποιήθηκαν για περαιτέρω χρήση χωρίς μηχανική κατεργασία. Ωστόσο, αποφασίστηκε να καθαριστούν μόνο οι περιοχές εδράσεων με λεπτή μηχανική κατεργασία.

Οι άξονες ελέγχθηκαν για σημάδια στην επιφάνεια καύσης χωρίς να παρατηρηθεί οτιδήποτε σε κάποια από τις ατράκτους των βαλβίδων. Διεξήχθησαν μετρήσεις στην επιφάνεια στεγανοποίησης και στο στέλεχος, από όπου διέρχεται η σφραγίδα του άξονα. Σε επτά από τις ατράκτους βαλβίδων, όλες στον πρώτο κινητήρα, η ψηφιακή επιφάνεια βρέθηκε πέρα από τα αποδεκτά όρια. Αυτές οι βαλβίδες αντικαταστάθηκαν με διαθέσιμα ανταλλακτικά και έγιναν οι απαραίτητες διευθετήσεις για αποστολή τους για επανακατασκευή.

Εικόνα 3.3: Άξονας βαλβίδας εξαγωγής για λείανση

Όσον αφορά τα έδρανα των βαλβίδων εξαγωγής, ακολουθήθηκε η ίδια διαδικασία όπως στους άξονες. Οι θέσεις των εδράνων βρέθηκαν σε καλή κατάσταση, εκτός από ελάχιστες μικρές βαθυλώσεις που παρατηρήθηκαν σε όλα τα έδρανα των βαλβίδων. Τα έδρανα κατεργάστηκαν έτσι ώστε να αποκτήσουν καλή επιφάνεια στεγανοποίησης από χτυπήματα. Τόσο η κατεργασία των εδράνων, όσο και αυτή των ατράκτων, έγινε από το προσωπικό της BWSC σε συνεργασία με τους μηχανικούς του σταθμού, δεδομένου ότι το προσωπικό του σταθμού καταπιεύθυνε για πρώτη φορά με τέτοιου είδους εργασίες. Τα έδρανα ελέγχθηκαν για κάψιμο στην επιφάνεια τους, χωρίς να παρατηρηθεί κάτι το επιλήγμα. Επιπρόσθετα, έγιναν οι απαραίτητες μετρήσεις στο χώρο που βρίσκονται τα έδρανα αλλά και νέες μετρήσεις μετά από τη μηχανική κατεργασία που πραγματοποιήθηκε.
Εικόνα 3.4: Κατεργασία εδρανού βαλβίδας εξαγωγής

Έλεγχος πραγματοποιήθηκε στα περιβλήματα των βαλβίδων εξαγωγής μετά τον καθαρισμό τους, με τη βοήθεια ανυψωτικού εργαλείου. Η οπίς στους αυξένες του άξονα βρέθηκε εντός ορίων μετά την κατάλληλη μέτρηση, συνεπώς δεν έγιναν αντικαταστάσεις.

Τέλος, σχετικά με τους ενεργοποιητές των βαλβίδων εξαγωγής, επιθεωρήθηκαν όλοι οπτικά χωρίς να αποσυναρμολογηθούν και βρέθηκαν σε καλή κατάσταση. Χωρίς την παραμικρή φθορά στις επιφάνειες στεγασμοποίησής τους βρέθηκαν και όλοι οι σωλήνες υψηλής πίεσης των βαλβίδων εξαγωγής (υδραυλικοί σωλήνες), αφού πρώτα καθαρίστηκαν και επιθεωρήθηκαν για ζημιές. Νέοι δακτύλιοι Ρ τοποθετήθηκαν στα τακάκια ώσης τους.

Ακολουθεί πίνακας με τα απαραίτητα εργαλεία χρήσης για την κατεργασία των βαλβίδων εξαγωγής:

<table>
<thead>
<tr>
<th>Αρ. Στοιχείου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>046</td>
<td>Μηχανή κατεργασίας κοπής</td>
</tr>
<tr>
<td>M1</td>
<td>Εργαλείο ανύψωσης για το περίβλημα βαλβίδας εξαγωγής</td>
</tr>
<tr>
<td>M2</td>
<td>Στήριγμα για βαλβίδα εξαγωγής</td>
</tr>
<tr>
<td>M3</td>
<td>Εργαλείο μέτρησης γωνίας πρόδου</td>
</tr>
<tr>
<td>M4</td>
<td>Κλειδί για το τακάκι ώσης των υδραυλικών σωλήνων</td>
</tr>
</tbody>
</table>
3.2.5.7 Έμβολα

Αρχικά, όλα τα έμβολα αποσυναρμολογήθηκαν από τους κυλινδρούς, με τα κυλινδρικά καπάκια να έχουν ήδη αφαιρεθεί προηγουμένως. Για την αποσυναρμολόγησή τους χρειάστηκε πρώτα να αφαιρεθεί ο τηλεσκοπικός σωλήνας από την κεφαλή του κυλινδρού με τη χρήση ειδικού εργαλείου. Έπειτα έγινε απελευθέρωση από τα κυλινδρικά χιτώνια με τη βοήθεια ρυθμιστή για αφαίρεση καρφιών (stud setter) και με τη βοήθεια ανυψωτικού γάντζου, το κάθε έμβολο τοποθετήθηκε σε πλατφόρμα για μεταφορά του στο χώρο φόρτωσης για προσεκτική εξέταση και διόρθωση.
Σχήμα 3.7: Τοποθέτηση αποσυναρμολογημένου εμβόλου σε πλατφόρμα με τη χρήση ανυψωτικού γάντζου

Τα έμβολα αφού επιθεωρήθηκαν, βυθίστηκαν σε νερό για μεγαλύτερη εναπόθεση άνθρακα, έτσι ώστε ο καθαρισμός τους να γίνει ευκολότερος. Όταν τα έμβολα βυθίστηκαν στο νερό, διεξήχθη δοκιμή πίεσης του θαλάμου ψύξης λαδιού για έλεγχο διαρροής, όπου σε κανένα από τα έμβολα δεν βρέθηκε διαρροή διά μέσου των δακτυλίων Ο. Επίσης έγινε εκτενής καθαρισμός των στεφάνων του εμβόλου και των αυλακώσεων δακτυλίων. Το ύψος της αυλάκωσης του δακτυλίου και το πάχος της στρώσης χρωμίου μετρήθηκαν σε όλες τις στεφάνες του εμβόλου. Παρατηρήθηκε χειρότερης καθαρότητας τεσσάρων εμβόλων (ID 3, 8, 9 και 12) υψηλή φθορά αυλάκωσης δακτυλίων.

Συγκεκριμένα για το κάθε έμβολο, ελέγχθηκε η ποσότητα κοιτασμάτων άνθρακα που σημειώθηκε στην κορυφή του εμβόλου και κατά πόσο οι δακτύλιοι ήταν κολλημένοι στις αυλακώσεις και σε καλή κατάσταση. Επίσης ελέγχθηκαν τα δεδομένα βαθμονόμησης για κάθε αυλάκωση αν ήταν εντός των ορίων ανοχής, έτσι ώστε να γίνει επαναχρησιμοποίηση της κορώνας των εμβόλων.

Στα δώδεκα έμβολα κάθε κινητήρα που ελέγχθηκαν, βρέθηκε μέτρια ποσότητα κοιτάσματος άνθρακα στην κορυφή των εμβόλων καθώς και εναποθέσεις άνθρακα στο πίσω μέρος των αυλακώσεων των δακτυλίων. Με εξαίρεση το δεύτερο δακτύλιο του εμβόλου με αριθμό ID 1
του πρώτου κινητήρα που ελέγχθηκε, ο οποίος βρέθηκε κολλημένος στην αυλάκωση, όλοι οι άλλοι δακτύλιοι των εμβόλων (τέσσερις για το κάθε έμβολο) βρέθηκαν ελεύθεροι στα αυλάκια τους αλλά σε αργή κίνηση, κυρίως στον τρίτο δακτύλιο. Αυτό οφείλεται στα κοιτάσματα του άνθρακα που παρατηρήθηκαν, σε συνδυασμό με το λάδι του κυλίνδρου το οποίο παραμένει σε κολλώδη κατάσταση στις χαμηλές θερμοκρασίες, όταν το έμβολο είναι εκτός του κινητήρα.

Εικόνα 3.5: Έλεγχος εμβόλου με ID 1 στην κορυφή και στις αυλακώσεις του.

Όσον αφορά τις βαθμονομήσεις των αυλακώσεων, κάποια δεδομένα βαθμονόμησης στα έμβολα με αριθμούς ID 3, 8, 9 και 12 που αφορούν τον πρώτο κινητήρα, βρέθηκαν εκτός των προδιαγραφόμενων ορίων ανοχής, συνεπώς παρουσίαζαν υψηλή φθορά αυλάκωσης. Αναλυτικότερα, στα έμβολα με αριθμό ID 3 και 8, τα όρια του δεύτερου δακτυλίου στην μπροστινή πλευρά (foreward), στην πίσω πλευρά (aft sides), βρέθηκαν πάνω από τα όρια βαθμονόμησης. Στο έμβολο με ID 9 τα όρια στο δεύτερο δακτύλιο στην πλευρά του έκκεντρου, στην πίσω πλευρά και στην πίσω πλευρά των καυσαερίων ήταν εκτός των ορίων ανοχής, ενώ στο έμβολο με ID 12 τα όρια στην πίσω πλευρά του έκκεντρου και των καυσαερίων ήταν εκτός του μέγιστου ορίου. Οι κορώνες των προαναφερθεσσών εμβόλων τοποθετήθηκαν στην άκρη για επανεξέταση. Σε όλα τα άλλα έμβολα, οι βαθμονομήσεις βρέθηκαν μέσα στα επιτρεπτά πλαίσια, έτσι οι κορώνες τους ήταν έτοιμες για επαναχρησιμοποίηση.

Ακολουθούν πίνακες με τις βαθμονομήσεις των αυλακώσεων στους τέσσερις δακτυλίους των εμβόλων με ID 3,8,9 και 12 και τις μέγιστες τιμές που μπορούν να έχουν, σύμφωνα με το
καταστατικό κατασκευής εμβόλων στους συγκεκριμένους κινητήρες. Οι τιμές με κίτρινο χρώμα αφορούν τις τιμές που βρέθηκαν εκτός των προδιαγραφόμενων ορίων ανοχής.

<table>
<thead>
<tr>
<th>#ID 3</th>
<th>Groove Height "H" (mm)</th>
<th>Norm. Ring Height</th>
<th>Max</th>
<th>Cam</th>
<th>Fore</th>
<th>Exhaust</th>
<th>Aft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring 1</td>
<td>12.5</td>
<td>+0.265</td>
<td>13.05</td>
<td>13.01</td>
<td>12.82</td>
<td>12.85</td>
<td>12.92</td>
</tr>
<tr>
<td>Ring 2</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.85</td>
<td>9.80</td>
<td>9.81</td>
<td>9.81</td>
</tr>
<tr>
<td>Ring 3</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.82</td>
<td>9.90</td>
<td>9.85</td>
<td>9.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#ID 8</th>
<th>Groove Height "H" (mm)</th>
<th>Norm. Ring Height</th>
<th>Max</th>
<th>Cam</th>
<th>Fore</th>
<th>Exhaust</th>
<th>Aft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring 1</td>
<td>12.5</td>
<td>+0.265</td>
<td>13.05</td>
<td>13.01</td>
<td>12.87</td>
<td>12.83</td>
<td>12.86</td>
</tr>
<tr>
<td>Ring 2</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.99</td>
<td>10.02</td>
<td>10.05</td>
<td>10.12</td>
</tr>
<tr>
<td>Ring 3</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.82</td>
<td>9.90</td>
<td>9.85</td>
<td>9.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#ID 9</th>
<th>Groove Height "H" (mm)</th>
<th>Norm. Ring Height</th>
<th>Max</th>
<th>Cam</th>
<th>Fore</th>
<th>Exhaust</th>
<th>Aft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring 1</td>
<td>12.5</td>
<td>+0.265</td>
<td>13.05</td>
<td>12.99</td>
<td>12.94</td>
<td>12.92</td>
<td>12.92</td>
</tr>
<tr>
<td>Ring 2</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>10.02</td>
<td>10.12</td>
<td>10.14</td>
<td>9.94</td>
</tr>
<tr>
<td>Ring 3</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.89</td>
<td>9.83</td>
<td>9.79</td>
<td>9.81</td>
</tr>
<tr>
<td>Ring 4</td>
<td>9.4</td>
<td>9.84</td>
<td>9.83</td>
<td>9.84</td>
<td>9.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#ID 12</th>
<th>Groove Height "H" (mm)</th>
<th>Norm. Ring Height</th>
<th>Max</th>
<th>Cam</th>
<th>Fore</th>
<th>Exhaust</th>
<th>Aft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring 1</td>
<td>12.5</td>
<td>+0.265</td>
<td>13.05</td>
<td>13.10</td>
<td>12.97</td>
<td>13.01</td>
<td>12.96</td>
</tr>
<tr>
<td>Ring 2</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.94</td>
<td>9.87</td>
<td>9.98</td>
<td>9.95</td>
</tr>
<tr>
<td>Ring 3</td>
<td>9.5</td>
<td>+0.240</td>
<td>10.05</td>
<td>9.81</td>
<td>9.79</td>
<td>9.83</td>
<td>9.79</td>
</tr>
<tr>
<td>Ring 4</td>
<td>9.79</td>
<td>9.80</td>
<td>9.82</td>
<td>9.80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 3.5: Βαθμονομήσεις για τις αυλακώσεις των δακτυλίων για τα έμβολα 3,8,9 και 12 και τιμές εκτός των προδιαγραφόμενων ορίων.

Η διαδικασία αυτή της μέτρησης των βαθμονομήσεων των δακτυλίων και η σύγκρισή τους με κάποια προκαθορισμένα όρια ανοχών εμπίπτει στην πολιτική της προβλεπτικής συντήρησης,
αφού έγινε αντικατάσταση των δακτυλίων με φθορά αυλάκωσης που ξεπερνούσε τα επιτρεπτά όρια και επιβεβαίωση λειτουργίας χωρίς μεγάλη φθορά αυλάκωσης για όλους τους άλλους δακτυλίους, τουλάχιστον μέχρι την επόμενη γενική συντήρηση.

Όσον αφορά τους δακτυλίους καθαρισμού των εμβόλων τύπου PC (Piston Cleaning), οι μετρήσεις τους βρέθηκαν εντός των αποδεκτών ανοχών και επαναχρησιμοποιήθηκαν στα αντίστοιχα χιτώνια. Όλοι οι δακτύλιοι του PC είχαν σφραγιστεί με τον ίδιο αριθμό αναγνώρισης ID των χιτωνίων, έτσι ώστε να πηγαίνουν ταυτόχρονα κατά την εγκατάσταση τους και στη σωστή θέση.

3.2.5.8 Χιτώνια κυλίνδρων

Στα χιτώνια των κυλίνδρων τα οποία είχαν ήδη αποσυναρμολογηθεί για τον έλεγχο των κυλινδρικών καπακιών, έγινε έλεγχος και αξιολόγηση της κατάστασής τους. Έγινε προσεκτικός έλεγχος στα αυλάκια των δακτυλίων O, στις επιφάνειες των τοιχωμάτων και στους λιπαντικούς αγωγούς-διαγραμμίσεις των χιτωνίων. Γενικά, η εμφάνιση των επιφανειών τους βρέθηκε καλή σε όλα τα χιτώνια των κυλίνδρων. Δεν υπήρχαν σκληρά σημάδια επαφής που να έχουν προκληθεί είτε λόγω γυαλίσματος οπόν είτε λόγω ανεπαρκής λίπανσης μεταξύ των δακτυλίων και των τοιχωμάτων του χιτωνίου. Η ταχύτητα φθοράς κάθε χιτώνιου ήταν πολύ χαμηλότερη από την μέση ταχύτητα φθοράς των 0,01 mm / 1000 ώρες, σε όλες τις θέσεις, εκτός από το σημείο 2 του χιτωνίου (59mm από την κορυφή του), όπου καταγράφηκε η υψηλότερη φθορά. Η εμφάνιση των επιφανειών κίνησης της γραμμής ήταν σε φυσιολογικά επίπεδα και τα σημάδια που προήλθαν από τη μηχανική κινήση κυμάτων, είχαν φύγει στο πάνω μέρος του χιτωνίου. Οι επενδύσεις λειανθήκαν και η επιφανειακή τραχύτητα διατηρήθηκε σε περίπου Ra=1,5 μετά την λείανση. Τα χιτώνια με αριθμούς ID 1-6 και 12 επανατοποθετήθηκαν πίσω στους αντίστοιχους κυλίνδρους τους, ενώ τα χιτώνια με ID 7-11 κρατήθηκαν ως ανταλλακτικά.
Εικόνα 3.6: Έλεγχος επιφανειών του κυλινδρικού χιτωνίου με ID 4.

Σχήμα 3.8: Βοηθητικά εργαλεία για τη συντήρηση των κυλινδρικών χιτωνίων.

<table>
<thead>
<tr>
<th>Αρ. Στοιχείου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Καπάκι για χιτώνιο κυλίνδρου</td>
</tr>
<tr>
<td>M2</td>
<td>Πρότυπο μετρητή</td>
</tr>
<tr>
<td>M3</td>
<td>Μετρητική ράβδος (μέτρο) για χιτώνιο κυλίνδρου</td>
</tr>
</tbody>
</table>

Πίνακας 3.6: Περιγραφή εργαλείων για τις μετρήσεις των κυλινδρικών χιτωνίων.

3.2.5.9 Κιβώτια πλήρωσης και βάκτρα εμβόλων

Τα κιβώτια πλήρωσης αποτελούνται από δέκα συνολικά δακτυλίους οι οποίοι είναι οι εξής: Ένας κορυφαίος δακτύλιος αποξέσεως, ένας κορυφαίος δακτύλιος στεγανοποίησης ορείχαλκου, δύο στεγανοποιητικοί δακτύλιοι ορείχαλκου διπλής όψεως και τέσσερις δακτύλιοι αποξέσεως από χάλυβα με αντικαταστάσιμες λάμες στον πυθμένα τους. Οι δακτύλιοι χαρακτηρίζονται ξεκινώντας από την κορυφή προς το κάτω μέρος, από τους αριθμούς 1 μέχρι το 10. Τα δώδεκα κιβώτια πλήρωσης (ID 1-12) αποσυναρμολογήθηκαν από τους άξονες των εμβόλων σε δύο κομμάτια, με αφαίρεση πρώτα των δακτυλίων Ο και μετά των κοχλιών.
συναρμολόγησης. Έπειτα μεταφέρθηκαν στο χώρο φόρτωσης για συνεχή καθαρισμό, επιθεωρήσεις και μετρήσεις. Οι δακτύλιοι αποξέσεως και οι δακτύλιοι στεγανοποίησης (ελατήρια), βαθμονομήθηκαν σύμφωνα με το βιβλίο οδηγιών και ελέγχθηκαν τα μήκη τους. Οι διάμετροι των βάκτρων εμβόλων βρέθηκαν μέσα σε αποδεκτά όρια και χωρίς καμιά τάση να αποκτήσουν σχήμα οβάλ, ενώ οι περιοχές όπου τοποθετούνται οι δακτύλιοι στη ράβδο, λιπάνθηκαν με διθειούχο μολυβδαίνιο MoS_2.

Σχήμα 3.9: Αποσυναρμολόγηση του κιβωτίου πλήρωσης από το βάκτρο του εμβόλου

Ωστόσο μερικά κιβώτια πλήρωσης ήταν εφοδιασμένα με παλιούς στεγανοποιητικούς δακτυλίους με αποτέλεσμα να υπάρχει υψηλή διαρροή πετρελαίου. Σε αυτά τα κιβώτια η θέση των δακτυλίων στεγανοποίησης 4 και 6 βρέθηκε κατεστραμμένη λόγω αποβλήτων υλικών, με αποτέλεσμα η αξονική απόσταση μεταξύ του περιβλήματος του κιβωτίου πλήρωσης και των δακτυλίων να γίνει μεγάλη, κάποιες φορές πάνω από το αποδεκτό μέγιστο όριο.

Αυτό ήταν κάτι που προβλημάτισε αρκετά την BWSC. Ως εκ τούτου αποφασίστηκε όλοι οι δακτύλιοι και οι λάμες να αντικατασταθούν με νέα ανταλλακτικά. Αναλυτικότερα και στα δώδεκα κουτιά πλήρωσης, ο δακτύλιος αποξέσεως 1, οι δακτύλιοι στεγανοποίησης 2, 3, 4, 5 και 6 και οι λάμες σε όλους τους δακτυλίους αποξέσεως (δακτύλιοι 7, 8, 9 και 10) αντικαταστάθηκαν με καινούρια ανταλλακτικά. Στα κιβώτια πλήρωσης με ID 9 και 10 παρατηρήθηκε ότι υπήρχαν υλικά απόβλητα στην δακτυλοειδή γείωση της επάνω αυλάκωσης του περιβλήματος του κιβωτίου πλήρωσης. Ο λόγος για τη ζημία αυτή δεν έγινε γνωστός και η BWSC έδωσε εντολή να διαλυθεί
το περίβλημα και να παραδοθεί ένα νέο ανταλλακτικό για αντικατάσταση στα προαναφερθέντα κιβώτια πλήρωσης.

Εικόνα 3.7: Φθορά στις αυλακώσεις των δακτυλίων λόγω υλικών αποβλήτων για τα κιβώτια πλήρωσης με ID 9 και 10.

3.2.5.10 Αντλίες καυσίμου

Όλες οι αντλίες καυσίμου αποσυναρμολογήθηκαν από τον κινητήρα αφού πρώτα αφαιρέθηκε το προστατευτικό τους κάλυμμα, το έμβολο κάθε αντλίας και οι σωλήνες εισόδου του καυσίμου. Έπειτα μεταφέρθηκαν στο εργαστήριο για επεξεργασία, επισκευή, καθαρισμό όλων των αποσυναρμολογημένων εξαρτημάτων και έλεγχο τους για ζημιές.

Τα έμβολα των αντλιών και τα βαρέλια βρέθηκαν σε καλή κατάσταση, εκτός από κάποια ελαφρά σημάδια στα έμβολα (σπηλαίωση), όπου η ελικοειδής κοπή είχε ρυθμιστεί για πλήρη λειτουργία. Αυτό ήταν κάτι φυσιολογικό και αποδεκτό κι έτσι τα έμβολα μπόρεσαν να χρησιμοποιηθούν για περαιτέρω χρήση χωρίς δισταγμό. Επίσης δεν παρατηρήθηκαν μια φυσιολογικά σημάδια φθοράς στις διαρροές των βαρελιών. Οι ρυθμιστές καυσίμου και οι μηχανισμοί ρύθμισης VIT καθαρίστηκαν και επιθεωρήθηκαν. Γενικά δεν παρατηρήθηκε ανώμαλη φθορά σε κανένα από τα μέρη της αντλίας, τα οποία συναρμολογήθηκαν προσεκτικά, ενώ παρατηρούνταν τα σημεία αντιστοίχισής τους.

Ακολούθως αποσυναρμολογήθηκαν όλες οι βαλβίδες αναρρόφησης, καθαρίστηκαν και επιθεωρήθηκαν ενώ οι επιφάνειες στεγανοποίησής τους συντηρήθηκαν με προσεκτική επικάλυψη.
Επείτα οι βαλβίδες συναρμολογήθηκαν με νέες σφραγίσεις. Όλες οι βίδες βύσματος βρέθηκαν σε καλή κατάσταση χωρίς σημάδια σπηλαίωσης.

Στη συνέχεια όλες οι βαλβίδες διατρέχοντας αποσυναρμολογήθηκαν από τα επάνω καλύμματα των αντλιών και καθαρίστηκαν και επιθεωρήθηκαν. Επίσης οι επιφάνειες στεγασμού συγκολλήθηκαν ελαφρά μεταξύ τους. Όλες οι βίδες βρέθηκαν σε καλή κατάσταση χωρίς σημάδια σπηλαίωσης.

Τα επάνω καλύμματα της αντλίας και καθαρίστηκαν και ελέγχθηκαν για ζημιές. Όλες οι αναρτήσεις αποσυναρμολογήθηκαν από τις αντλίες και καθαρίστηκαν και επιθεωρήθηκαν ενώ οι δακτύλιοι στεγασμού αντικαταστάθηκαν. Παρατηρήθηκαν ελαφρές φθορές στην εσωτερική επιφάνεια των εξωτερικών ελατηρίων και στην εξωτερική επιφάνεια των εσωτερικών ελατηρίων, δεδομένου ότι έρχονταν σε επαφή μεταξύ τους κατά τη λειτουργία. Παρόλα αυτά, όλα τα παραπάνω εξαρτήματα βρίσκονταν σε καλή κατάσταση για περαιτέρω χρήση τους, επομένως τα ελατήρια επαναχρησιμοποιήθηκαν.

Σχήμα 3.10: Αποσυναρμολόγηση ανάρτησης από την αντλία και καυσίμου.

Το συγκρότημα των καλυμάτων άσπρους όλων των αντλιών και καυσίμου, εφοδιάστηκε με νέους δακτύλιους στεγασμούς. Μετά την ολοκλήρωση των επισκευών, όλες οι αντλίες και καυσίμοι τοποθετήθηκαν στο κινητήρα και επαναρυθμίστηκε το ηλεκτρονικό σύστημα VIT (Variable Injection Timing) επαναρυθμίστηκε σύμφωνα με τις προηγούμενες ρυθμίσεις του. Κατά τη διάρκεια των μετρήσεων απόδοσης του κινητήρα, οι βάσεις ρύθμισης VIT και καυσίμου, ρυθμίστηκαν ελαφρώς για να εξισορροπηθεί το φορτίο του κινητήρα. Η πλήρης επισκευή της αντλίας και καυσίμου πραγματοποιήθηκε από το προσωπικό του σταθμού, υπό την συνεχή επίβλεψη της BWSC.
Τέλος, όλοι οι σωλήνες υψηλής πίεσης καθαρίστηκαν, επιθεωρήθηκαν για τυχόν ζημιές και περιτυλίχτηκαν όπως ήταν απαραίτητο. Όλοι οι δακτύλιοι Ο αντικαταστάθηκαν.

Σχήμα 3.11: Εργαλεία για τη συντήρηση και επισκευή των αντλιών καυσίμου

<table>
<thead>
<tr>
<th>Αρ. Στοιχείου</th>
<th>Περιγραφή</th>
</tr>
</thead>
<tbody>
<tr>
<td>014</td>
<td>Μηχανική δοκιμαστική διάταξη</td>
</tr>
<tr>
<td>038</td>
<td>Μάνικα υψηλής πίεσης</td>
</tr>
<tr>
<td>087</td>
<td>Περίβλημα ελατηρίων</td>
</tr>
<tr>
<td>134</td>
<td>Οδηγός δοκιμαστικής διάταξη</td>
</tr>
<tr>
<td>M1</td>
<td>Εργαλείο λείανσης για έδρανα σωλήνων λαδιού-καυσίμου</td>
</tr>
<tr>
<td>M2</td>
<td>Εργαλείο λείανσης για σωλήνες λαδιού-καυσίμου</td>
</tr>
<tr>
<td>M3</td>
<td>Ασφάλιση γάντζου</td>
</tr>
<tr>
<td>M4</td>
<td>Υποδοχή για κομμάτι ύδησης</td>
</tr>
</tbody>
</table>

Πίνακας 3.7: Περιγραφή εργαλείων συντήρησης αντλιών καυσίμου.

3.2.5.11 Στροφαλοθάλαμος

Ο στροφαλοθάλαμος κάθε κινητήρα, επιθεωρήθηκε προσεκτικά για να εξεταστεί αν υπάρχουν χαλαρά μέρη πριν από τον καθαρισμό του ενώ η περιοχή στον πυθμένα επιθεωρήθηκε για την ένδειξη οποιωνδήποτε σωματιδίων λευκού μετάλλου, χωρίς να βρεθεί κάτι το επιλήψιμο. Επιπλέον, έγινε έλεγχος για εκτροπή του στροφαλοφόρου άξονα με τη χρήση τροχου περιστροφής και έλεγχος της θέσης του με μετρητή ακίδων κατά τη στροφή του. Ο έλεγχος για εκτροπή του στροφαλοφόρου άξονα έγινε πριν και μετά τη γενική συντήρηση με τα αποτελέσματα να είναι
εντός των συνιστώμενων ανοχών. Επίσης όλοι οι κοχλίες στους στροφαλοθάλαμους επιθεωρήθηκαν, ελέγχοντας τις πλάκες και τα σύρματα ασφάλισης τους και πραγματοποιώντας έλεγχο με τη μέθοδο του ήχου σφυριού, χωρίς να βρεθεί οτιδήποτε στο επιλήψιμο.

3.2.5.12 Δέκτης αέρα και χώρος προσωρινής αποθήκευσης

Έγινε σάρωση του δέκτη καθαρισμού αέρα και του χώρου προσωρινής αποθήκευσης με πλήρη καθαρισμό και επιθεώρηση για ύπαρξη ζημιών και ρωγμών, χωρίς να βρεθεί οτιδήποτε.

3.2.5.13 Ψύκτης αέρα καθαρισμού

Ο καθαρισμός του ψύκτη αέρα καθαρισμού ήταν έργο που ανατέθηκε στο προσωπικό του σταθμού. Η κατάσταση των ψυγείων ήταν σχετικά καλή με εξαίρεση το ψυγείο με τον αριθμό 2, το οποίο είχε καταστραφεί νωρίτερα λόγω της χαλάρωσης των κοχλιών των εγκάρσιων δοκών που στήριζαν τις πλάκες υποστήριξης σωλήνων. Το ψυγείο επισκευάστηκε σύμφωνα με τις οδηγίες της BWSC και έγινε χημικός καθαρισμός του.

3.2.6 Διαδικασίες εκκίνησης μηχανής

Με το πέρας της γενικής συντήρησης των επιμέρους εξαρτημάτων των τριών κινητήρων, ξεκίνησε μια προετοιμασία για επανεκκίνηση της λειτουργίας τους. Οι εργασίες προετοιμασίας πραγματοποιήθηκαν με την παρουσία του υπεύθυνου βοηθού μηχανικού βάρδιας.

Αρχικά το νερό ψύξης γεμίστηκε ξανά στον κινητήρα, όπου παρατηρήθηκαν δευτερεύουσες διαρροές διά μέσου των δακτυλίων O στις συνδέσεις του νερού με τα καλύμματα των κυλίνδρων. Οι διαρροές διορθώθηκαν άμεσα με την αλλαγή των δακτυλίων O. Στη συνέχεια το καύσιμο έφτασε στον κινητήρα κάτω από χαμηλή πίεση σε πρώτο στάδιο. Υπήρξε μια διαρροή λαδιού που προέρχοταν από όλους τους δίσκους των αντλιών αποστράγγισης καυσίμου. Αμέσως η λειτουργία των αντλιών καυσίμου σταμάτησε και διερευνήθηκε η αιτία της διαρροής. Διαπιστώθηκε ότι η αποστράγγιση της δεξαμενής ανάμιξης παρέμεινε ανοιχτή σε υπερβολικό βαθμό με το ξεκίνημα των αντλιών με αποτέλεσμα το καύσιμο να μην μπορεί να αποστραγγιστεί στη δεξαμενή πετρελαίου (ρεζερβουάρ). Ως αποτέλεσμα, ο σωλήνας γέμισε πετρέλαιο το οποίο βγήκε από τις ανοικτές συνδέσεις μέσω των δίσκων. Αυτή η διαρροή λαδιού είχε σαν επίπτωση,
τη δημιουργία προβλήματος στην ήδη καθαρισμένη μηχανή. Έτσι μέρος του προσωπικού τόσο από την BWSC όσο και από το σταθμό της ΑΗΚ κινητοποιήθηκε για τον καθαρισμό του κινητήρα.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ. Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και συναφείς σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.

Κατά τη διάρκεια της γενικής συντήρησης δεν παρατηρήθηκαν άλλες διαρροές λαδιού από τις αντλίες και σωλήνες που αφαιρέθηκαν. Η αντλία λιπαντικού ξεκίνησε και παρατηρήθηκαν πίδακες λαδιού από την BWSC όσο και από το σταθμό της ΑΗΚ.
Σχήμα 3.12: Γραφική παράσταση κατά την πρώτη φάση επαναλειτουργίας για κάθε κινητήρα με σταδιακή ανάκτηση φορτίου (Mw).

Με την ολοκλήρωση της πρώτης φάσης, ο κάθε κινητήρας τέθηκε σε συνεχή λειτουργία με βηματική ανάκτηση του πλήρους φορτίου του (περίπου 17.6 Mw) σε διάστημα δύο ωρών και διατήρηση του μέχρι τις επόμενες 250 ώρες (δεύτερη φάση). Ακολούθως ξαναέγινε μια επιθεώρηση χωρίς να σημειωθούν οποιεσδήποτε παρατηρήσεις που να αφορούν τη λειτουργία των κινητήρων. Οι λιπαντήρες ρυθμίστηκαν για να παραδώσουν 1,8 g/kwh κατά τη διάρκεια της δεύτερης φάσης επανεκκίνησής τους.

Σχήμα 3.13: Γραφική παράσταση κατά τη δεύτερη φάση επαναλειτουργίας για κάθε κινητήρα με βηματική ανάκτηση πλήρους φορτίου 17.6 Mw σε διάστημα δύο ωρών.
Οι παραπάνω διεργασίες εκκίνησης για τους κινητήρες πραγματοποιήθηκαν κατά τη διάρκεια της πρωινής βάρδιας από το προσωπικό του σταθμού. Ακολουθεί πίνακας με τους εργάτες και τις ώρες εργασίας που απαιτήθηκαν για την επαναλειτουργία του κάθε κινητήρα.

<table>
<thead>
<tr>
<th>Αρ. Ημέρας</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εργασίες</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Εκκίνηση κινητήρα και έλεγχος για διαρροές και θόρυβο</td>
<td>1x4</td>
<td></td>
</tr>
<tr>
<td>Επιθεώρηση δακτυλίων και στροφάλου μετά από 1 ώρα λειτουργίας</td>
<td>2x2</td>
<td></td>
</tr>
<tr>
<td>Επιθεώρηση μετά από 24 ώρες λειτουργίας</td>
<td>1x2</td>
<td></td>
</tr>
</tbody>
</table>

Πίνακας 3.8: Εργασίες εκκίνησης για κάθε κινητήρα.

3.2.7 Έλεγχοι για τη διασφάλιση ποιότητας λειτουργίας

Η BWSC διεξήγαγε κάποιες μετρήσεις και επιθεωρήσεις έτσι ώστε να διασφαλιστεί ότι οι διαδικασίες συντήρησης που μόλις ολοκληρώθηκαν, είχαν το επιθυμητό αποτέλεσμα. Συγκεκριμένα, έγινε επιθεώρηση των δακτυλίων μετά από λειτουργία του κάθε κινητήρα για 250 ώρες και 500 ώρες αντίστοιχα χωρίς να σημειωθεί οτιδήποτε

Οι επιθεωρήσεις με το τέλος της δεύτερης φάσης λειτουργίας των κινητήρων (250 ώρες λειτουργίας) αφορούσαν τη γενική κατάσταση των δακτυλίων, των χιτώνιων και των κορωνών των εμβόλων. Τα δακτυλιοειδή πακέτα και τα χιτώνια όλων των κυλίνδρων βρέθηκαν σε πολύ καλή κατάσταση με καλή παροχή λιπαντικού και δεν παρατηρήθηκε καμία ένδειξη μη φυσιολογικής φθοράς. Γενικά ο ρυθμός φθοράς του πάχους της επικάλυψης των δακτυλίων σε κάθε κύλινδρο υπολογίστηκε εντός των αποδεκτών ορίων. Η απορρόφηση καυσίμου στο χώρο αποθήκευσης του κυλίνδρου ήταν μικρότερη δυνατή κάτι που υποδεικνύει ελάχιστη κάψη του λαδιού του κυλίνδρου. Επίσης υπολογίστηκε ο ρυθμός τροφοδοσίας λιπαντικού με τη βοήθεια του κυλίνδρου μέτρησης. Το λιπαντικά ρυθμίστηκαν για να παραδώσουν 1,8 g / kwh στις 250 ώρες λειτουργίας και 1,5 g / kwh αντίστοιχα στις 500 ώρες.

Επίσης πραγματοποιήθηκε μια γενική δοκιμή απόδοσης του κάθε κινητήρα υπέρ με την απαραίτητη προσαρμογή του συστήματος VIT και των αντλιών καυσίμου. Οι κινητήρες βρέθηκαν καλά ισορροπημένοι και έγινε σύσταση από την BWSC να γίνεται συνεχής έλεγχος.
εξισορρόπησης σε τακτά χρονικά διαστήματα, ώστε να εξασφαλίζεται η συνεχής βέλτιστη λειτουργία τους.

Συμπερασματικά, οι τελικές μετρήσεις απόδοσης του κινητήρα που λήφθηκαν κρίθηκαν αποδεκτές. Έλεγχος πραγματοποιήθηκε και για την ανάλυση αποστράγγισης καυσίμου, προκειμένου να αξιολογηθεί η κατάσταση του κυλίνδρου κατά τη λειτουργία του κινητήρα.

Εικόνα 3.8: Έλεγχος των δακτυλίων και των επενδύσεων του δεύτερου κυλίνδρου στον πρώτο κινητήρα μετά από 250 ώρες λειτουργίας. Παρατηρείται έλεγχος άνθρακα, εντός στο πάνω μέρος των δακτυλίων.

Για τη διασφάλιση της ποιότητας της συνολικής εργασίας που εκτελέστηκε, επισυνάφθηκε από την BWSC μια έκθεση διασφάλισης ποιότητας με τα ονόματα των προσώπων που εξέτασαν κάθε στοιχείο. Επίσης για εύκολη και μελλοντική αναφορά καταγράφηκε μια επισκόπηση με τους αριθμούς αναγνώρισης των εξαρτημάτων που έχουν εγκατασταθεί και αφαιρεθεί, για τον κάθε κινητήρα.

<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Αριθμός στοιχείου</th>
</tr>
</thead>
<tbody>
<tr>
<td>Άτρακτοι βαλβίδων εξαγωγής που αφαιρέθηκαν</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Άτρακτοι βαλβίδων εξαγωγής που εγκαταστάθηκαν</td>
<td>19 20 21 22 23 24 1 43 3 4 5 9</td>
</tr>
<tr>
<td>Έδρανα βαλβίδων εξαγωγής που αφαιρέθηκαν</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>Έδρανα βαλβίδων εξαγωγής που εγκαταστάθηκαν</td>
<td>19 20 21 22 23 24 1 2 3 4 5 9</td>
</tr>
</tbody>
</table>
3.3 Διαχείριση Ανταλλακτικών

Η διαχείριση των ανταλλακτικών στο σταθμό Δεκέλειας γίνεται με καταγραφή και επεξεργασία σε βάση δεδομένων SAP. Όλα τα υλικά που χρησιμοποιούνται στο σταθμό είναι καταγραμμένα και ταξινομημένα σε κατηγορίες που αφορούν τα συστήματα των ατμοστροβίλων ή τις μηχανές εσωτερικής καύσης, εξωτερικής καύσης, ή κατηγορίες που αφορούν τον κάθε υποσταθμό. Αφού πρώτα γίνει ο απαραίτητος έλεγχος καταγραφής των ανταλλακτικών στις Απαραίτητες Αποθήκες, ενημερώνεται η βάση δεδομένων SAP από τον αρμόδιο αποθηκαρίο για το κάθε εξάρτημα καταγραφής και γίνονται οι ανάλογες προσαρμογές στο σύστημα μετά τη χρήση του κάθε ανταλλακτικού. Με αυτό τον τρόπο η διεύθυνση είναι σε θέση να γνωρίζει την ακριβή ποσότητα για κάθε ανταλλακτικό που διαθέτει ο σταθμός για οποιαδήποτε χρονική στιγμή, τα άμεσα αναλώσιμα καθώς και τα κρίσιμα ανταλλακτικά που πρέπει να διατίθενται ανά πάσα στιγμή. Τα ανταλλακτικά είναι καταχωρημένα σε κομμάτια ή παρτίδες. Για κάθε υλικό υπάρχει προκαθορισμένο κατώτατο σημείο για διατήρηση του ελαχιστού ποσοτικού αποθέματος (minimum stock), όπου προηγείται αναπαραγγελία του υλικού, το οποίο δίνεται από τα κεντρικά γραφεία της ΑΗΚ.

Για την παραγγελία των ανταλλακτικών, η διεύθυνση του σταθμού απευθύνεται στα κεντρικά γραφεία της ΑΗΚ στη Λευκωσία. Συντάσσεται από το σταθμό έκθεση με την αίτηση για παραγγελία νέων ανταλλακτικών, όπου καθορίζεται το είδος του υλικού και η ποσότητα.
παραγγελίας που απαιτείται και κατόπιν αποστέλλεται στα κεντρικά γραφεία, που έχουν την αποκλειστική ευθύνη για την παραγγελία και την έγκαιρη διάθεση των ανταλλακτικών. Από εκεί καθορίζεται η ποσότητα των υλικών που θα παραγγελθούν μέσω της διεξαγωγής διαγωνισμών με προσφορές από διάφορους προμηθευτές των ανταλλακτικών, έτσι ώστε να γίνει η επιλογή για παραγγελία του επιθυμητού υλικού. Οι διαγωνισμοί αξιολογούνται με βάση τον τεχνικό ποιοτικό έλεγχο των προσφορών και την οικονομική αξιολόγηση που θα κρίνει την πιο συμφέρουσα προσφορά και τη σύναψη συμφωνίας. Έτσι γίνεται επιλογή των κατάλληλων υλικών που πληρούν τις απαραίτητες προδιαγραφές. Οι προμηθευτές και οι εταιρείες στους οποίους αναθέτονται προσφορές, γίνονται με βάση συστάσεων από τους κατασκευαστές του σταθμού. Επίσης συνάπτονται δεσμευτικοί όροι σύμβασης των προμηθευτών για άμεση παράδοση των ανταλλακτικών και υποβολής ελέγχου καλής λειτουργίας τους.

Παρόμοια πολιτική ακολουθείται και για την παραγγελία λιπαντικών. Συγκεκριμένα, κάθε βράδυ διενεργείται έλεγχος από τον υπεύθυνο μηχανικό βάρδιας του σταθμού, όπου καταγράφονται οι ποσότητες του λιπαντικού καυσίμου για τους κυλίνδρους (cylinder oil) και του συστήματος λίπανσης (lub oil) και συντάσσεται έκθεση που παραδίδεται στον υπεύθυνο λειτουργίας του σταθμού. Όταν η στάθμη των λιπαντικών στις δεξαμενές φτάσει το 40%, γίνονται οι απαραίτητες διεργασίες για παραγγελία λιπαντικών από τα κεντρικά γραφεία και από εκεί διενεργούνται διαγωνισμοί αξιολόγησης προσφορών από τους προμηθευτές. Ενδεικτικό παράδειγμα για την παραγγελία λιπαντικών στους κυλίνδρους με τη διεξαγωγή διαγωνισμών προσφορών, είναι η συμφωνία της ΑΗΚ τα τελευταία χρόνια με αντιπρόσωπο της εταιρείας Shell Alexia LS για την προμήθεια λιπαντικού τύπου Melina S 30. Σε περίπτωση επιλογής διαφορετικού λιπαντικού το οποίο έχει κρίθει καταλληλότερο και πιο οικονομικό, πρέπει να γίνει αφαίρεση όλου του προηγούμενου λιπαντικού από τους κυλίνδρους και αντικατασταθεί από τον προηγούμενο λιπαντικό από τους κυλίνδρους και αντικατασταθηκή του κάτι που συνεπάγεται με διακοπή της λειτουργίας των μηχανών εσωτερικής καύσης για τρεις περίπου μέρες για άδειασμα των δεξαμενών και καθαρισμό των φίλτρων και των σωληνώσεων από ποσότητες του παλιού λιπαντικού. Ο σταθμός εκτιμά ότι παραγγελία λιπαντικών απαιτείται κάθε 4-5 μήνες λειτουργίας των μηχανών.

Ακολουθεί πίνακας με τις ποσότητες των βασικών ανταλλακτικών που διατηρεί ο σταθμός για το σταθμό ICE-1 και τα παρελκόμενά του, τις χρήσεις που έγιναν τα τελευταία τρία χρόνια, το τρέχον απόθεμα που διατηρείται στο σταθμό και τη συνολική ποσότητα παραγγελίας που
πραγματοποιήθηκε για το κάθε υλικό το συγκεκριμένο χρονικό διάστημα (Βλέπε Παράρτημα Πίνακας 3-10).

4. Συμπεράσματα

Μετά τις γενικές επιδιορθώσεις των τριών κινητήρων της μονάδας ICE-1 σημειώθηκαν κάποιες επισημάνσεις για την καλύτερη λειτουργία της μονάδας. Καταρχάς, με βάση τους ελέγχους που διεξήχθησαν με το τέλος της γενικής συντήρησης, παρατηρήθηκε μείωση της συνολικής απώλειας λαδιού (πετρελαίου) στα κιβώτια πλήρωσης των κυλίνδρων κάτι που συνεπάγεται μια εξοικονόμηση κόστους στο σταθμό. Έτσι για βελτιστοποίηση του συστήματος, υιοθετήθηκε η σχετική σύσταση του εγχειρίδιον συντήρησης για μείωση του ρυθμού τροφοδοσίας του λαδιού λίπανσης στους κυλίνδρους (cylinder oil) σε 1.1 g/kwh μετά από 1200 ώρες λειτουργίας.

Σε γενικές γραμμές η διαδικασία γενικής συντήρησης κρίθηκε αρκετά επιτυχής, από την άποψη ότι δεν παρουσιάστηκε κάποιο σοβαρό πρόβλημα μέχρι σήμερα όσον αφορά τη λειτουργία των δίχρονων κινητήρων που να επηρεάσει τη συνολική απόδοσή τους. Αυτό αποδεικνύει την καλύτερη απόδοση των δίχρονων κινητήρων σε σχέση με τους τετράχρονους που απαιτούν συστηματικότερους ελέγχους και ενδιάμεσες διαδικασίες συντήρησης ορισμένων εξαρτημάτων τους, κάτι που προϋποθέτει πιο όμοια διάθεση ανταλλακτικών, συνεπώς και μεγαλύτερο κόστος.

Σε γενικές γραμμές η διαδικασία γενικής συντήρησης κρίθηκε αρκετά επιτυχής, από την άποψη ότι δεν παρουσιάστηκε κάποιο σοβαρό πρόβλημα μέχρι σήμερα όσον αφορά τη λειτουργία των δίχρονων κινητήρων που να επηρεάσει τη συνολική απόδοσή τους. Αυτό αποδεικνύει την καλύτερη απόδοση των δίχρονων κινητήρων σε σχέση με τους τετράχρονους που απαιτούν συστηματικότερους ελέγχους και ενδιάμεσες διαδικασίες συντήρησης ορισμένων εξαρτημάτων τους, κάτι που προϋποθέτει πιο όμοια διάθεση ανταλλακτικών, συνεπώς και μεγαλύτερο κόστος.

Επίσης το προσωπικό του σταθμού που ήταν παρών στην πρώτη προγραμματισμένη γενική συντήρηση, και ο οποίος το μεγαλύτερο ποσοστό συνεχίζει να απασχολείται στο σταθμό μέχρι σήμερα, απέκτησε εμπειρία και γνώσεις σε θέματα συντήρησης των κινητήρων αλλά και ευελιξία στην αντιμετώπιση οποιαδήποτε επίθεσης που μπορεί παρουσιαστεί όχι μόνο στην υπομονάδα ICE-1 αλλά και στην ιστορική επεξεργασία της διαδικασίας συντήρησης μοιάζει σε πολύ μεγάλο βαθμό. Εκτός αυτού είναι σε θέση να φέρει εις πέρας την επόμενη προγραμματισμένη γενική συντήρηση αναλαμβάνοντας περισσότερες αρμοδιότητες, υπό
την επίβλεψη και πάλι στελεχών της κατασκευαστικής εταιρείας της BWSC. Επιπρόσθετα, όλο αυτό το διάστημα, το προσωπικό του σταθμού κατάφερε να ανταπεξέλθει επάξια σε θέματα συντήρησης που αφορούν την υπομονάδα ICE-1 και γενικότερα στη μηχανική εξοπλισμό του σταθμού. Ωστόσο καλό θα ήταν να γίνει μια σταδιακή ανανέωση του έμψυχου δυναμικού του σταθμού, αφού λόγω της οικονομικής κρίσης στο νησί τα τελευταία χρόνια οι προσλήψεις στο σταθμό και γενικότερα στον ημικρατικό τομέα της ΑΗΚ ήταν από ελάχιστες έως μηδενικές. Με προσλήψεις νέων ατόμων με όρεξη και καιρικές ιδέες, θα επιτευχθεί ανανέωση του προσωπικού και μεταφορά από τους πιο έμπειρους, της γνώσης για την υπάρχουσα τεχνογνωσία. Επίσης με πραγματοποίηση ειδικών σεμιναρίων και πρακτικών ανά τακτά χρονικά διαστήματα θα ενισχύονταν οι γνώσεις, η εμπειρία και η αντίληψη του έμψυχου δυναμικού για αντιμετώπιση οποιασδήποτε απρόοπτης κατάστασης.

Το βασικό πρόβλημα που παρατηρήθηκε το τελευταίο διάστημα όσο αφορά τη λειτουργία των μονάδων εσωτερικής καύσης του σταθμού, έχει να κάνει με τη συντήρηση ορισμένων βοηθητικών εξαρτημάτων των κινητήρων, όπως των ψυγείων νερού, των διαχωριστών (separators) αλλά και των καταλυτών του ICE-1. Τα βοηθητικά αυτά εξαρτήματα παρουσίαζαν συχνά βλάβες κατά τη λειτουργία τους τα τελευταία χρόνια. Βέβαια η πολιτική συντήρησης τους δεν εμπίπτει στα πλαίσια της γενικής συντήρησης των κινητήρων και ακολουθείται προληπτική συντήρησή τους σε συγκεκριμένα χρονικά διαστήματα. Ωστόσο η αρκετά συχνή απόδοση εμφάνιση βλαβών σε βοηθητικά εξαρτήματα, ενώτε επηρεάζει την απόδοση τους κινητήρες και αυξάνει τους νεκρούς χρόνους λειτουργίας για την πλήρη αποκατάστασή των βοηθητικών εξαρτημάτων τους. Ειδικότερα η συχνή δυσλειτουργία των διαχωριστών καυσίμου στις δυο υπομονάδες εσωτερικής καύσης είναι κάτι που παρατηρείται αρκετά συχνά με αποτέλεσμα οι μηχανές να τίθενται εκτός λειτουργίας μέχρι την αποκατάστασή τους. Η πολιτική συντήρησης που ακολουθείται για όλα τα βοηθητικά εξαρτήματα του σταθμού υπάγεται στα πλαίσια της προληπτικής συντήρησης, όπου σύμφωνα με καταστατικό από τους κατασκευαστές του κάθε μηχανήματος, πραγματοποιείται συντήρησή του ανά συγκεκριμένα χρονικά διαστήματα. Όμως η συστηματική εμφάνιση βλαβών πέρα από κάποια όρια, είναι κάτι που πρέπει να προβληματίσει τη διοίκηση του σταθμού, έτσι ώστε να δίνεται μεγαλύτερη έμφαση στις μεθόδους προληπτικής συντήρησης αυτών των εξαρτημάτων, με συνεχή καταγραφή των μετρήσεων τους για ευκολότερο προσδιορισμό της απόδοσής τους και της διάρκειας ζωής τους. Με συνδυασμό στοιχείων
προληπτικής και προβλεπτικής συντήρησης, οι ιθύνοντες του σταθμού θα μπορέσουν να εξάγουν ευκολότερα συμπεράσματα για την αντικατάσταση του βοηθητικού εξοπλισμού με καινούρια πιο αξιόπιστα μηχανήματα εφόσον κάτι τέτοιο δεν είναι οικονομικά σύμφωνο. Εδώ φαίνεται η σημαντικότητα του τμήματος Αυτοματισμού και Ελέγχου, όπου θα πρέπει να αναλάβει τη συστηματική συλλογή στοιχείων μέσω μετρήσεων για τις ώρες που ο μηχανικός εξοπλισμός βρίσκεται εκτός λειτουργίας και καταγραφή των νεκρών χρόνων, έτσι ώστε η διεύθυνσή του σταθμού να μπορεί να κάνει τις απαραίτητες με τους προκαθορισμένους στόχους λειτουργίας και να προβεί στις ανάλογες διορθωτικές ενέργειες. Έτσι θα μπορέσουν να προσδιορίσουν ανταλλακτικά μικρότερης αξίας αξίας ως προς το σύνολο των ανταλλακτικών.

Επίσης πέρα από την προβλεπόμενη προγραμματισμένη συντήρηση των βοηθητικών εξαρτημάτων, θα πρέπει να εξεταστεί από τη διεύθυνση η περίπτωση ένταξης της συντήρησης τους στα πλαίσια της γενικής συντήρησης των κινητήρων, για καλύτερη και πιο άμεση προσαρμογή του όλου συστήματος. Επιπλέον είναι γενικά αποδεκτό από όλους τους σταθμούς ότι η εγκατάσταση των σύγχρονων καταλυτών για έλεγχο των ρύπων στους δίχρονους κινητήρες είχε επηρεάσει σε αρκετό βαθμό, τη μείωση της συνολικής τους απόδοσης.

Τέλος αξίζει να αναφερθεί η ύπαρξη άμεσης συνεργασίας με τα κεντρικά της ΑΗΚ, έτσι ώστε να γίνονται σωστές και ορθολογιστικές ποσότητες παραγγελιών ανταλλακτικών, αλλά και να υπάρχει δέσμευση για παράδοση κατάλληλων ανταλλακτικών και χωρίς χρονοκαθυστέρηση.

5. Βιβλιογραφία

1. Βλάχος Δημήτριος (2013), Διδακτικές σημειώσεις στο μάθημα Αξιοπιστία και Συντήρηση, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
2. Κολτσάκης Γρηγόριος (2005), Διδακτικές σημειώσεις στο μάθημα Μηχανές Εσωτερικής Καύσης, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
3. Δ. Π. Ψωινός (1997), Οργάνωση και Διοίκηση Εργοστασίων, Πρώτος τόμος, Σκοπιμότητα Δημιουργίας και Σχεδίαση
6. Παράρτημα

Πίνακας 3.1

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Work</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
<th>Resource Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΑΡΧΗ</td>
<td>0 hrs</td>
<td>0 hrs</td>
<td>Mon 2/13/12</td>
<td>Mon 2/13/12</td>
<td></td>
</tr>
<tr>
<td>Αποσυναρμόλογηση εξαρτημάτων</td>
<td>320 hrs</td>
<td>26 hrs</td>
<td>Mon 2/13/12</td>
<td>Thu 2/16/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Αποσυναρμόλογηση σωλήνων 1-12</td>
<td>20 hrs</td>
<td>5 hrs</td>
<td>Mon 2/13/12</td>
<td>Mon 2/13/12</td>
<td></td>
</tr>
<tr>
<td>Αφαίρεση χώρου αποθήκευσης και καλύμματος δέκτη αέρα</td>
<td>5 hrs</td>
<td>5 hrs</td>
<td>Mon 2/13/12</td>
<td>Mon 2/13/12</td>
<td>Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>Αφαίρεση κυλινδρικών καλυμμάτων 1-12</td>
<td>25 hrs</td>
<td>5 hrs</td>
<td>Mon 2/13/12</td>
<td>Tue 2/14/12</td>
<td>Τεχνικοί πρωινής βάρδιας [5]</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Καθαρισμός χώρου αποθήκευσης και δέκτη αέρα</td>
<td>100 hrs</td>
<td>10 hrs</td>
<td>Mon 2/13/12</td>
<td>Tue 2/14/12</td>
<td>Βοηθοί - Καθαριστές [10]</td>
</tr>
<tr>
<td>Αφαίρεση πιστονίων</td>
<td>24 hrs</td>
<td>6 hrs</td>
<td>Tue 2/14/12</td>
<td>Tue 2/14/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [4]</td>
</tr>
<tr>
<td>Αποσυναρμολόγηση σωλήνων από πτερύγια</td>
<td>10 hrs</td>
<td>10 hrs</td>
<td>Wed 2/15/12</td>
<td>Thu 2/16/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας</td>
</tr>
<tr>
<td>Τράβηγμα προς τα έξω των επενδύσεων</td>
<td>16 hrs</td>
<td>4 hrs</td>
<td>Tue 2/14/12</td>
<td>Tue 2/14/12</td>
<td>Βοηθοί - Καθαριστές [4]</td>
</tr>
<tr>
<td>Καθαρισμός μπλοκ κινητήρα και βάσης αντλιών καυσίμου</td>
<td>50 hrs</td>
<td>10 hrs</td>
<td>Wed 2/15/12</td>
<td>Thu 2/16/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [5]</td>
</tr>
<tr>
<td>Αφαίρεση αντλιών καυσίμου</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Mon 2/13/12</td>
<td>Tue 2/14/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Καθαρισμός βάσης αντλιών καυσίμου και περιμετρικά</td>
<td>30 hrs</td>
<td>10 hrs</td>
<td>Tue 2/14/12</td>
<td>Thu 2/16/12</td>
<td>Βοηθοί - Καθαριστές [3]</td>
</tr>
<tr>
<td>Γενική συντήρηση χιτωνίων επένδυσης</td>
<td>270 hrs</td>
<td>50 hrs</td>
<td>Tue 2/14/12</td>
<td>Wed 2/22/12</td>
<td>Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>Αφαίρεση χιτωνίων επένδυσης</td>
<td>10 hrs</td>
<td>10 hrs</td>
<td>Tue 2/14/12</td>
<td>Wed 2/15/12</td>
<td>Βοηθοί - Καθαριστές [7]</td>
</tr>
<tr>
<td>Καθαρισμός χιτωνίων επένδυσης</td>
<td>70 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας, Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>Μέτρηση διαμέτρων χιτωνίων</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td>Τεχνικοί πρωινής βάρδιας[6], Τεχνικοί νυχτερινής βάρδιας [6]</td>
</tr>
<tr>
<td>Λείανση χιτωνίων</td>
<td>120 hrs</td>
<td>10 hrs</td>
<td>Fri 2/17/12</td>
<td>Mon 2/20/12</td>
<td>Τεχνικοί πρωινής βάρδιας[6], Τεχνικοί νυχτερινής βάρδιας[6]</td>
</tr>
<tr>
<td>Συναρμολόγηση χιτωνίων και πτερυγίων</td>
<td>10 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Tue 2/21/12</td>
<td>Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>Βαφή κυλίνδρων και ψύξη χιτωνίων</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Wed 2/22/12</td>
<td>Βοηθοί - Καθαριστές [4]</td>
</tr>
<tr>
<td>Γενική συντήρηση κυλινδρικών καπακιών</td>
<td>140 hrs</td>
<td>46 hrs</td>
<td>Tue 2/14/12</td>
<td>Tue 2/21/12</td>
<td>Τεχνικοί πρωινής βάρδιας[4]</td>
</tr>
<tr>
<td>Αποσυναρμολόγηση κυλινδρικών καπακιών</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Tue 2/14/12</td>
<td>Wed 2/15/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [4]</td>
</tr>
<tr>
<td>Καθαρισμός κυλινδρικών καπακιών</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Thu 2/16/12</td>
<td>Βοηθοί - Καθαριστές [4]</td>
</tr>
<tr>
<td>Τρόχισμα τσεπών στις θέσεις έδρασης βαλβίδων κυλινδρικών καπακιών</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Thu 2/16/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [4]</td>
</tr>
<tr>
<td>Τοποθέτηση καλυμμάτων ψύξης των κυλίνδρων</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Tue 2/21/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [2]</td>
</tr>
<tr>
<td>Συντήρηση βαλβίδων εξαγωγής</td>
<td>380 hrs</td>
<td>64 hrs</td>
<td>Wed 2/15/12</td>
<td>Mon 2/27/12</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Αποσυναρμολόγηση βαλβίδων εξαγωγής</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Wed 2/15/12</td>
<td>Thu 2/16/12</td>
<td></td>
</tr>
<tr>
<td>Καθαρισμός βαλβίδων εξαγωγής</td>
<td>80 hrs</td>
<td>10 hrs</td>
<td>Fri 2/17/12</td>
<td>Mon 2/20/12</td>
<td></td>
</tr>
<tr>
<td>Τρόχισμα ατράκτων βαλβίδων εξαγωγής</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Τρόχισμα εδράσεων βαλβίδων εξαγωγής</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Tue 2/21/12</td>
<td></td>
</tr>
<tr>
<td>Μέτρηση διαμέτρων ατράκτων και εδράσεων</td>
<td>10 hrs</td>
<td>10 hrs</td>
<td>Wed 2/21/12</td>
<td>Thu 2/16/12</td>
<td></td>
</tr>
<tr>
<td>Μέτρηση αέρα κυλινδρού</td>
<td>5 hrs</td>
<td>5 hrs</td>
<td>Fri 2/17/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Μέτρηση υδραυλικότητας κυλινδρού</td>
<td>5 hrs</td>
<td>5 hrs</td>
<td>Fri 2/17/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Αντικατάσταση σφραγίσεων</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Tue 2/21/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση βαλβίδων ασφαλείας</td>
<td>10 hrs</td>
<td>10 hrs</td>
<td>Wed 2/15/12</td>
<td>Thu 2/16/12</td>
<td></td>
</tr>
<tr>
<td>Συναρμολόγηση βαλβίδων εξαγωγής</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Thu 2/23/12</td>
<td>Fri 2/24/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση βαλβίδων εκκίνησης αέρα</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση βαλβίδων ένδειξης/ανακόψιας</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Τοποθέτηση βαλβίδων εκκίνησης και ένδειξης</td>
<td>10 hrs</td>
<td>10 hrs</td>
<td>Thu 2/23/12</td>
<td>Fri 2/24/12</td>
<td></td>
</tr>
<tr>
<td>Τοποθέτηση βαλβίδων εξαγωγής στα κυλινδρικά καπάκια</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Mon 2/27/12</td>
<td>Mon 2/27/12</td>
<td></td>
</tr>
<tr>
<td>Βαφή περιβλημάτων βαλβίδων εξαγωγής</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Fri 2/24/12</td>
<td>Mon 2/27/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση αντλιών καυσίμου</td>
<td>285 hrs</td>
<td>51 hrs</td>
<td>Tue 2/14/12</td>
<td>Thu 2/23/12</td>
<td></td>
</tr>
<tr>
<td>Αποσυναρμολόγηση αντλιών καυσίμου</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Tue 2/14/12</td>
<td>Thu 2/23/12</td>
<td></td>
</tr>
<tr>
<td>Καθαρισμός αντλιών καυσίμου</td>
<td>120 hrs</td>
<td>10 hrs</td>
<td>Fri 2/17/12</td>
<td>Mon 2/20/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση βαλβίδων αναρρόφησης</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση βαλβίδων διάτρησης</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td></td>
</tr>
<tr>
<td>Συντήρηση αποσβεστήρα κραδασμών</td>
<td>5 hrs</td>
<td>5 hrs</td>
<td>Thu 2/16/12</td>
<td>Thu 2/16/12</td>
<td>Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Συναρμολόγηση βαλβίδων αναφόρησης/διάτρησης</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Fri 2/17/12</td>
<td>Mon 2/20/12</td>
<td>Τεχνικοί πρωινής βάρδιας [2]</td>
</tr>
<tr>
<td>Συναρμολόγηση αντλιών και καυσίμου</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Wed 2/22/12</td>
<td>Thu 2/23/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Επιθέωρηση οδηγόν κυλίνδρων - Αλλαγή σφραγίσεων στις οπές</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Tue 2/21/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Συντήρηση πιστονιών - κιβωτίων πλήρωσης</td>
<td>380 hrs</td>
<td>30 hrs</td>
<td>Wed 2/15/12</td>
<td>Mon 2/20/12</td>
<td>Τεχνικοί πρωινής βάρδιας [2]</td>
</tr>
<tr>
<td>Αποσυναρμολόγηση πιστονιών και κιβωτίων πλήρωσης</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Wed 2/15/12</td>
<td>Thu 2/16/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Καθαρισμός πιστονιών και κιβωτίων πλήρωσης</td>
<td>220 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td>Δημητριό - Καθαριστές [22]</td>
</tr>
<tr>
<td>Μέτρηση διαμέτρου πιστονιών</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/16/12</td>
<td>Fri 2/17/12</td>
<td>Τεχνικοί πρωινής βάρδιας [2]</td>
</tr>
<tr>
<td>Συναρμολόγηση πιστονιών</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Fri 2/17/12</td>
<td>Mon 2/20/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Μέτρηση διαμέτρου δακτυλίων κιβωτίων πλήρωσης</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Fri 2/17/12</td>
<td>Τεχνικοί πρωινής βάρδιας [2]</td>
</tr>
<tr>
<td>Συναρμολόγηση δακτυλίων κιβωτίων πλήρωσης</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Mon 2/20/12</td>
<td>Fri 2/17/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
<tr>
<td>Εγκατάσταση στοιχείων</td>
<td>675 hrs</td>
<td>73 hrs</td>
<td>Mon 2/20/12</td>
<td>Fri 3/2/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [2]</td>
</tr>
<tr>
<td>Τοποθέτηση χιτωνίων</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Tue 2/21/12</td>
<td>Wed 2/22/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [2]</td>
</tr>
<tr>
<td>Σύνδεση και έλεγχος λιπαντικών πτερυγίων</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/23/12</td>
<td>Fri 2/24/12</td>
<td>Τεχνικοί πρωινής βάρδιας [2]</td>
</tr>
<tr>
<td>Τοποθέτηση πιστονιών</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Thu 2/23/12</td>
<td>Fri 2/24/12</td>
<td>Τεχνικοί πρωινής βάρδιας [2]</td>
</tr>
<tr>
<td>Σφίξιμο ραβδών εμβόλων - τοποθέτηση τηλεσκοπικού σωλήνα</td>
<td>20 hrs</td>
<td>10 hrs</td>
<td>Fri 2/24/12</td>
<td>Mon 2/27/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [2]</td>
</tr>
<tr>
<td>Σφίξιμο κουτιού πλήρωσης</td>
<td>5 hrs</td>
<td>5 hrs</td>
<td>Mon 2/27/12</td>
<td>Tue 2/28/12</td>
<td>Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>Τοποθέτηση κυλινδρικών καπακιών</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Tue 2/28/12</td>
<td>Wed 2/29/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [3], Τεχνικοί πρωινής βάρδιας</td>
</tr>
<tr>
<td>Συναρμολόγηση αντιλών σύνδεσης</td>
<td>50 hrs</td>
<td>10 hrs</td>
<td>Wed 2/29/12</td>
<td>Thu 3/1/12</td>
<td>Τεχνικοί νυχτερινής βάρδιας [5]</td>
</tr>
<tr>
<td>Έλεγχος νερού ψύξης, λαδιού λιπαντικής και καυσίμου για διαρροές</td>
<td>40 hrs</td>
<td>10 hrs</td>
<td>Thu 3/1/12</td>
<td>Fri 3/2/12</td>
<td>Τεχνικοί πρωινής βάρδιας [4]</td>
</tr>
</tbody>
</table>
Πίνακας 3.10

<table>
<thead>
<tr>
<th>Περιγραφή υλικού</th>
<th>Κατανάλ. 2015</th>
<th>Κατανάλ. 2016</th>
<th>Κατανάλ. 2017</th>
<th>Τρόπος διάθεσης</th>
<th>Τρέχουσα κατάσταση</th>
<th>Ποσότητα τελευταίας παραγγελίας</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Κάλυμμα διαχωριστή καυσίμου (FO)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Παρτίδα</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2 Ανταλλακτικά διαχωριστή FO</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Παρτίδα</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3 Αξονας αντλίας παροχής διαχωριστή FO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4 Δακτύλιος αντλίας τροφοδοσίας διαχωριστή FO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5 Στεγανοποιητικά διαχωρ FO</td>
<td>76</td>
<td>17</td>
<td>33</td>
<td>Κομμάτι</td>
<td>325</td>
<td>538</td>
</tr>
<tr>
<td></td>
<td>Σωλήνες τροφοδοσίας διαχωριστή FO</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>Κομμάτι</td>
<td>3</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>Βαλβίδες ελέγχου διαχωριστή FO</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Κομμάτι</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Στεγανοποιητικά άξονα μεταφοράς</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Παρτίδα</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Δακτύλιοι μεταφοράς</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>Στεγανοποιητικά λιπαντικού (luboil)</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Δακτύλιος O λιπαντικού</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Κομμάτι</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Δακτύλιος O νερού ψύξης</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>Στεγανοποιητικά νερού ψύξης</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>Δακτύλιος O προθερμαντήρα</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>Στεγανοποιητικά προθερμαντήρα</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>Στεγανοποιητικά συμπυκνωτή</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>Κάλυμμα διαχωριστή νερού (WO)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>Κιβώτιο πλήρωσης διαχωριστή νερού</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Παρτίδα</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>Φίλτρο λαδιού</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>Φίλτρο καυσίμου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Φίλτρο νερού</td>
<td>Κομμάτι</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Φίλτρο αέρα</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Σφαιρικές βλβίδες υψηλής πίεσης</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Σφαιρικές βλβίδες συγκόλλησης</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Βλβ τύπου πεταλούδας</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Βλβ ασφαλείας</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Αντλία ανύψωσης γεννήτριας</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Σφαιρικές βλβίδες συγκόλλησης</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Στεγανοποιητικά σωλήνων ανάφλεξ γεννήτριας</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Τσιμούχες σωλήνων ανάφλεξ γεννήτριας</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Κέλυφος στροφαλοφόρου</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Κέλυφος στροφάλου</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Στέλεχος στροφαλοφόρου</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Στέλεχος στροφάλου</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Βλβ ασφαλείας στροφαλοθαλάμου</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Αλυσίδα εκκεντροφόρου</td>
<td>Κομμάτι</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Κυλινδρικά καπάκια διάφορων τύπων</td>
<td>24</td>
<td>189</td>
<td>8</td>
<td>Κομμάτι</td>
<td>148</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>----</td>
<td>-----</td>
<td>---</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>36</td>
<td>Δακτύλιοι Ο μανδύα ψύξης κυλ. καπακιών</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>Κομμάτι</td>
<td>104</td>
</tr>
<tr>
<td>37</td>
<td>Ραβδοί εμβόλων</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td>Δακτύλιοι στεφάνης εμβόλ</td>
<td>37</td>
<td>12</td>
<td>1</td>
<td>Κομμάτι</td>
<td>35</td>
</tr>
<tr>
<td>39</td>
<td>Κυλ επενδύσεις</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>7</td>
</tr>
<tr>
<td>40</td>
<td>Πέτρες λείανσης</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>9</td>
</tr>
<tr>
<td>41</td>
<td>Δακτύλιοι σκληρούς κυλ επενδύσεων</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>21</td>
</tr>
<tr>
<td>42</td>
<td>Στεγανοποιητικά κυλ επενδύσεων</td>
<td>0</td>
<td>96</td>
<td>0</td>
<td>Κομμάτι</td>
<td>244</td>
</tr>
<tr>
<td>43</td>
<td>Δακτύλιοι Ο επενδύσεων</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>Κομμάτι</td>
<td>390</td>
</tr>
<tr>
<td>44</td>
<td>Μανδώας ψύξης επένδυσης</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>6</td>
</tr>
<tr>
<td>45</td>
<td>Περιβλήμα κιβ χλάδισης</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>6</td>
</tr>
<tr>
<td>46</td>
<td>Δακτύλιοι απόξεσης κιβ ράβδου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>241</td>
</tr>
<tr>
<td>47</td>
<td>Δακτύλιοι έδρασης στεγαν. νερού</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>Κομμάτι</td>
<td>41</td>
</tr>
<tr>
<td>48</td>
<td>Δακτύλιοι έδρασης στεγαν. λαπαντικού</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>172</td>
</tr>
<tr>
<td>49</td>
<td>Λάμες κιβωτίου πλήρωσης</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>Κομμάτι</td>
<td>571</td>
</tr>
<tr>
<td></td>
<td>Ελατήρια κιβ πλήρωσης</td>
<td></td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>52</td>
<td>Τηλεσκοπικός σωλήνας</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>Αντλίες καυσίμου (433Α)</td>
<td>140</td>
<td>264</td>
<td>15</td>
<td>Κομμάτι</td>
<td>1428</td>
</tr>
<tr>
<td>54</td>
<td>Έμβολα αντλιών καυσίμου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>16</td>
</tr>
<tr>
<td>55</td>
<td>Βλβ διάτρησης αντλιών καυσίμου</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>Κομμάτι</td>
<td>2</td>
</tr>
<tr>
<td>56</td>
<td>Αμορτισέρ αντλιών καυσίμου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>7</td>
</tr>
<tr>
<td>57</td>
<td>Δακτύλιοι έδρασης εμβόλων</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>Κομμάτι</td>
<td>138</td>
</tr>
<tr>
<td>58</td>
<td>Βλβ εξαγωγής ολοκληρωμένες</td>
<td>28</td>
<td>170</td>
<td>27</td>
<td>Κομμάτι</td>
<td>855</td>
</tr>
<tr>
<td>59</td>
<td>Στεγανοποιητικά περιβλήματα βλβ εξαγωγής</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>Κομμάτι</td>
<td>35</td>
</tr>
<tr>
<td>60</td>
<td>Δακτύλιοι Ο εδράσεως βλβ εξαγωγής</td>
<td>15</td>
<td>33</td>
<td>7</td>
<td>Κομμάτι</td>
<td>52</td>
</tr>
<tr>
<td>61</td>
<td>Μηχανισμός βλβ εξαγωγής</td>
<td>3</td>
<td>24</td>
<td>0</td>
<td>Κομμάτι</td>
<td>242</td>
</tr>
<tr>
<td>62</td>
<td>Δακτύλιοι Ο βλβ εξαγωγής</td>
<td>239</td>
<td>72</td>
<td>8</td>
<td>Κομμάτι</td>
<td>343</td>
</tr>
<tr>
<td>63</td>
<td>Βλβ εκκίνησης ολοκληρωμένη</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>3</td>
</tr>
<tr>
<td>64</td>
<td>Δακτύλιοι Ο βλβ εκκίνησης</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>44</td>
</tr>
<tr>
<td>Αριθμός</td>
<td>Δεδομένοι</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Στεγανοποιητικά λίπανσης κυλ.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>10</td>
</tr>
<tr>
<td>66</td>
<td>Δακτύλιοι Ο λιπαντικού κυλ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>8</td>
</tr>
<tr>
<td>67</td>
<td>Σωλήνες υψηλής πίεσης καυσίμου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>3</td>
</tr>
<tr>
<td>68</td>
<td>Δακτύλιοι Ο σωλήνων καυσ</td>
<td>51</td>
<td>64</td>
<td>16</td>
<td>Κομμάτι</td>
<td>258</td>
</tr>
<tr>
<td>69</td>
<td>Δακτύλιοι έδρασης λιπ κυλ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>4</td>
</tr>
<tr>
<td>70</td>
<td>Βλβ εκτόνωσης</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>46</td>
</tr>
<tr>
<td>71</td>
<td>Βλβ ασφαλείας</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>8</td>
</tr>
<tr>
<td>72</td>
<td>Κοχλίες συγκράτησης πλασίου μηχανής</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>2</td>
</tr>
<tr>
<td>74</td>
<td>Κοχλίες εκκεντροφόρου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>Κοχλίες άξονα γεννήτριας</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>76</td>
<td>Δακτύλιοι Ο κορώνας εμβόλων</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>Κομμάτι</td>
<td>45</td>
</tr>
<tr>
<td>77</td>
<td>Δακτύλιοι Ο κιβ πλήρωσης</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>Κομμάτι</td>
<td>51</td>
</tr>
<tr>
<td>78</td>
<td>Σταυρός σύνδεσης εμβόλου-ράβδου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>Δακτύλιοι στεγαν αξιονικών κραδασμών</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
<td>3</td>
</tr>
<tr>
<td>80</td>
<td>Σετ επισκευής αέρα ελέγχου</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Παρτίδα</td>
<td>7</td>
</tr>
</tbody>
</table>

83
<table>
<thead>
<tr>
<th>Παράδειγμα</th>
<th>Σημείωση</th>
<th>Κομμάτι</th>
<th>Σημείωση</th>
<th>Κομμάτι</th>
</tr>
</thead>
<tbody>
<tr>
<td>Προστατευτικό πλέγμα υπερτροφοδότη</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Εξαγοράς κοιλίας υπερτροφοδότη</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Ρότορας υπερτροφ</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Δακτύλιοι υπερτροφ έδρας υπερτροφ</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Στεγανοποιητικά υπερτροφοδότη</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Βίδες στήριξης υπερτροφοδότη</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Περικόχλια ασφαλείας υπερτρ</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Κάλυμμα υπερτρ</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Εργαλεία υπερτρ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Σουρωτήρι λιπαντικού υπερτρ</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Σωλήνες αέρα</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Σωλήνες εισαγωγής καυσίμου υπερτρ</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Σωλήνες επιστροφής νερού ψύξης</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Ρουλεμάν</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Σωλήνες τροφοδοτικού νερού</td>
<td>4</td>
<td>46</td>
<td>2</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Σωλήνες επιστροφής</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>Μονάδες ένδειξης</td>
<td>12</td>
<td>98</td>
<td>4</td>
<td>Κομμάτι</td>
</tr>
<tr>
<td>98</td>
<td>Βίδες ράβδων - εμβόλων</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>99</td>
<td>Φλάντζα εμβόλων</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>Κουτί ελέγχου καθαρισμού αέρα</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>Ενεργοποιητής θέρμανσης καυσ</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>Σωλήνες προμήθειας καυσ</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>103</td>
<td>Αντλία αποστράγγισης</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>104</td>
<td>Αντλία παροχής</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>105</td>
<td>Κύριες σωλήνες λιπαντικού</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>106</td>
<td>Στεγανοποιητικά μηχανής</td>
<td>0</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>107</td>
<td>Κυλιόμενοι οδηγοί</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>Διακλαδωμένοι σωλήνες βλβ εκκιν</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>109</td>
<td>Διανομέας βλβ εκκ</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>