Staging of Schizophrenia with the use of PANSS: An international multi-center study

Konstantinos N Fountoulakis¹, Elena Dragioti², Antonis T. Theofilidis¹, Tobias Wiklund², Xenofon Atmatzidis², Ioannis Nimatoudis¹, Erik Thys³, Martien Wampers³, Luchezar Hranov⁴, Trayana Hristova⁴, Daniil Aplatidis⁴, Roumen Milev⁵, Felicia Iftene⁶, Filip Spaniel⁶, Pavel Knýt⁶, Petra Furstova⁶, Tiina From⁷, Henry Karlsson⁷, Maija Walta⁷, Raimo K. R. Salokangas⁸, Jean-Michel Azorin⁸, Justine Bournián⁹, Julie Montant⁹, Georg Juckel⁹, Ida S. Haussleiter⁹, Athanasios Douzenis¹⁰, Nikolaos Smyrnis¹¹, Leonidas Mantonakis¹¹, Zsófia Nemes¹², Xenia Gonda¹³, Dora Vajda¹³, Anita Juhasz¹³, Amresh Shrivastava¹⁴, John Waddington¹⁵, Maurizio Pompili¹⁶, Anna Comparelli¹⁶, Valentina Corigliano¹⁶, Elmars Rancans¹⁷, Alvydas Navickas¹⁸, Jan Hilbig¹⁸, Laurynas Bukelskis¹⁸, Lidiya Injac Stevovic¹⁹, Sanja Vodopic¹⁹, Oluyomi Esan²⁰, Oluremi Oladele²⁰, Christopher Osunbote²⁰, Janusz K. Rybakowski²¹, Pawel Wojcik²¹, Klaudia Domowicz²¹, Maria Luisa Figueira²², Ludgero Linhares²², Joana Crawford²², Anca-Livia Panfi²³, Daria Smirnova²⁴, Olga Izmailova²⁴, Dusica Lecic-Tosevska²⁴, Henk Temmings²⁶, Fleur Howells²⁶, Julio Bobes²⁷, Maria Paz Garcia-Portilla²⁷, Leticia Garcia-Alvarez²⁷, Gamze Erzin²⁸, Hasan Karadag²⁸, Avinash De Sousa²⁹, Anuja Bendre²⁹, Cyril Hoschli³, Cristina Bredicean³⁰, Ioan Papava³⁰, Olivia Vukovic³¹, Bojana Pejuskovic³², Vincent Russell³², Loukas Athanasiadis³³, Anastasia Konsta³³, Dan Stein³⁴, Michael Berk³⁵, Olivia Dean³⁶, Rajiv Tandon³⁷, Siegfried Kasper³⁸, Marc De Hert³

1. 3rd Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece.
2. Department of Medical and Health Sciences (IMH), Faculty of Health Sciences, Linköping University, 581 85, Linköping, SE, Sweden; Hallunda psychiatric outpatient clinic, Stockholm psychiatric southwest clinic, Karolinska Huddinge University Hospital, Sweden
3. University Psychiatric Centre KU Leuven, Kortenberg and Department of Neurosciences KU Leuven Belgium
4. University M multiprofile Hospital for Active Treatment in Neurology and Psychiatry "Sveti Naum", Sofia, Bulgaria
5. Department of Psychiatry, Queen’s University, Providence Care Hospital, Kingston, On, Canada,
6. National Institute of Mental Health, Kecany, Czech Republic
7. Department of Psychiatry, University of Turku, 70, Kunnallissairaantie, 20700 Turku, Finland
8. Department of Psychiatry, Sainte Marguerite University Hospital, Marseille, France; Timone Institute of Neuroscience, UMR 7289, CNRS and Aix-Marseille University, Marseille, France.
9. Department of Psychiatry, Ruhr University Bochum, LWL-University Hospital, Alexandrinenstr.1.1, 44791 Bochum, Germany.
10. 2nd Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece.
11. Department of Psychiatry, National and Kapodistrian University of Athens School of Medicine, Eginition Hospital, Athens, Greece

© The Author(s) 2019. Published by Oxford University Press on behalf of CINP. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
12. Nyírő Gyula Hospital, Budapest, Hungary
13. Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary.
14. Western University, London Ontario, Canada.
15. Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.
16. Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
17. Department of Psychiatry and Narcology, Riga Stradins University, Tvaika Str. 2, Riga, LV 1005 Latvia.
18. Clinic of Psychiatric, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Psychosocial Rehabilitation Department of the Vilnius Mental Health Center, Department for Psychosis Treatment of the Vilnius Mental Health Center.
19. Clinical Department of Psychiatry, Clinical Centre of Montenegro, Podgorica, Montenegro, Department of Psychiatry, School of Medicine, University of Montenegro, Dzona Dzeksona bb, Podgorica, Montenegro; Clinical Department of Neurology, Clinical Centre of Montenegro, Dzona Dzeksona bb, Podgorica, Montenegro.
20. Department of Psychiatry, College of Medicine, University of Ibadan, Nigeria
21. Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
22. Department of Psychiatry and Mental Health, Santa Maria University Hospital, Lisbon, Portugal.
23. University of Medicine and Pharmacy of Târgu Mures, Romania
24. Samara State Medical University, Department of Psychiatry; Samara Psychiatric Hospital, Inpatient unit, Russia
25. Institute of Mental Health, Belgrade, Serbia; Serbian Academy of Sciences ad Arts; Belgrade, Serbia
26. Department of Psychiatry and Mental Health, University of Cape Town Cape Town, Western Cape, South Africa, 7935.
27. Department of Psychiatry, University of Oviedo and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Oviedo, Spain
28. Psychiatry Department, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
29. Department of Psychiatry Lokmanya Tilak Municipal Medical College Mumbai, India
30. University of Medicine and Pharmacy of Timisoara, Romania
31. Institute of Mental Health, School of Medicine, University of Belgrade, Belgrade, Serbia
32. Department of Psychiatry, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
33. 1st Department of Psychiatry, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece.
34. MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
35. Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Australia and Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, the Florey Institute.
36. Deakin University, School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Geelong, Australia
37. Department of Psychiatry, University of Florida, USA
38. Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria

Correspondence to: Konstantinos N. Fountoulakis, 6, Odysseos str (1st Parodos Ampelonon str.), 55535 Pylaia Thessaloniki, Greece
Tel: +30 6945776935 e-mail: kfount@med.auth.gr
Abstract

Introduction: A specific clinically relevant staging model for schizophrenia has not yet been developed. The aim of the current study was to evaluate the factor structure of the PANSS and to develop such a staging method.

Materials and methods: Twenty-nine centers from 25 countries contributed 2358 patients aged 37.21±11.87 years with schizophrenia. Analysis of Covariance, Exploratory Factor Analysis (EFA), Discriminant Function Analysis (DFA) and inspection of resultant plots were performed.

Results: EFA returned five factors explaining 59% of the variance (Positive-Po, Negative-Ne, Excitement/Hostility-EH, Depression/Anxiety-DA and Neurocognition-Ncog). The staging model included four main stages with substages that were predominantly characterized by a single domain of symptoms (stage 1: Po; stage 2a and 2b: EH; stage 3a and 3b: DA; stage 4a and 4b: Ncog). There were no differences between sexes. The DFA developed an algorithm which correctly classified >85% of patients.

Discussion: This study elaborates a five-factor solution and a clinical staging method for patients with schizophrenia. It is the largest study to address these issues among patients who are more likely to remain affiliated with mental health services for prolonged periods of time.

Key words: Schizophrenia; staging; outcome; illness course
Main outcomes

1. The general five-factor solution of the PANSS is confirmed but with different loadings of individual items.

2. Schizophrenia could be characterized by the presence of four main stages with substages. Each stage is predominantly characterized by a different clinical feature (stage 1: Psychosis; stage 2a and 2b: excitement and hostility; stage 3a and 3b: depression and anxiety; stage 4a and 4b: Neurocognitive decline).

3. The model was identical for males and females.

4. More than 85% of patients can be attributed a stage on the basis of a PANSS-based algorithm.

Limitations

1. Cross sectional study design with the utilization of limited demographic and clinical info or treatment resistance status

2. Neurocognition was assessed on the basis of the therapist’s clinical impression.

3. Study sample was not epidemiologically selected; represents those patients with at least less than ideal remission who remained in contact with mental health services for several years.

4. The method for the identification of stages falls in the grey zone between quantitative and qualitative methodology and both the method and its results are open to debate.

5. Although antipsychotic medication is believed to influence only positive psychotic symptoms, their effect on the model remains to be studied specifically.
1. Introduction

Schizophrenia is a chronic and complex disorder. Its diagnosis is made according to the Diagnostic and Statistical Manual of Mental Disorders (which is currently in its fifth Edition; DSM-5) and is based on polythetic criteria (APA, 2000, 2013). This means that it is officially accepted that it is common for patients to present with highly varying and commonly comorbid pictures of psychopathology (Keshavan et al., 2008; Lang et al., 2013). The observation that patients often do not correspond to the identified subtypes as defined by previous versions of the DSM, but instead present with mixed symptoms and syndromes, not only lead to the abandoning of subtypes but also adds variability in etiology and pathobiology, as well as uncertainty concerning treatment and prognosis (Lang et al., 2013).

Several models were developed in order to gain insight into the structure of the clinical picture and the psychopathology of schizophrenia. So far, the most widely used model is the ‘pyramidal’ model, developed by Stanley Kay and colleagues and is based on ratings of the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987; Kay et al., 1988; Kay, 1990; Kay and Sevy, 1990; Kay and Sandyk, 1991). The ‘pyramid’ is made by poles corresponding to positive, negative and depressive symptomatology which create a triangular base. According to this model, excitement symptoms constitute a separate vertical axis (Figure 1) (Kay and Sevy, 1990).

Overall the five factor model value has been repeatedly shown across various studies (Marder et al., 1997; Lykouras et al., 2000; Wolthaus et al., 2000; Emsley et al., 2003; Fresan et al., 2005; Monteiro et al., 2008; Llorca et al., 2012; Wallwork et al., 2012; Stochl et al., 2014; Wu et al., 2015), although there are data suggesting that even more multifaceted and complex models may be valid as well (Peralta and Cuesta, 1994;
Nakaya et al., 1999b; Nakaya et al., 1999a; Emsley et al., 2003; Van den Oord et al., 2006; Walsh-Messinger et al., 2018). The five-factor model manifests significant variety among the dimensions identified by different authors, there does not seem to exist adequate fit (van der Gaag et al., 2006), and maybe the most important inconsistency concerns the most appropriate item composition of the proposed PANSS models (White et al., 1997; Lykouras et al., 2000; White, 2005; van der Gaag et al., 2006). Nevertheless, the PANSS and associated models are used extensively in psychiatric research to assess diagnostic and treatment efficacy (Lindenmayer et al., 1986; Marder et al., 1997; Bunk et al., 1999; Lykouras et al., 2000; Emsley et al., 2003; Emsley et al., 2007; Monteiro et al., 2008; Citrome et al., 2011; Llorca et al., 2012; Wallwork et al., 2012; Stochl et al., 2014; Wu et al., 2015).

There are several possible explanations for the observed variability in PANSS factors and they mainly include contributing factors such as age and sex (Pandurangi et al., 1994; Leung M.D and Chue M. R. C. Psych, 2000; Hayashi et al., 2002; Emmerson et al., 2009; Walsh-Messinger et al., 2018). According to many authors, age could serve as a proxy of staging. A number of studies have reported the presence of significant associations of stage of illness with course, outcome, prognosis and treatment response (Nakaya et al., 1999b; Nakaya et al., 1999a; Emsley et al., 2007; Cuesta et al., 2012; Hill et al., 2012). The effect of socio-cultural factors as well as intrinsic factors pertaining to the specific diagnostic and conceptual approaches of individual researchers and research centers could exert a major contributing effect towards significant heterogeneity of the results (Khan et al., 2013a; Khan et al., 2013b), but these issues are not adequately studied (Dollfus and Petit, 1995; Nakaya et al., 1999b; Nakaya et al., 1999a; Hayashi et al., 2002; Walsh-Messinger et al., 2018).
It is evident that there is a need for an empirically derived and comprehensive model. Such a model should take into account the specific stage of the illness in combination with gender- and age-specific signs and symptoms as well as sociocultural characteristics. If such an approach eventually appears it could add to our understanding of schizophrenia and improve diagnostic accuracy and patient management. During the last decades there research has focused on the staging of mental disorders (Fava and Kellner, 1993; Agius et al., 2010; McGorry et al., 2010). In this frame a five-stage model (i.e. prodromal, acute psychotic episode, residual, prechronic and chronic phases) has been proposed based on the course of schizophrenia (Fava and Kellner, 1993). Other authors have proposed three to eight stages based on the development of the illness over time (Agius et al., 2010; McGorry et al., 2010). The main idea is that clinical staging could permit better targeting of treatment and could also significantly improve the individualized balance of potential risks and benefits (Wojciak et al., 2016). In spite of these pressing needs, to date there is no easily applicable and reliable clinical tool available for the identification of stages in patients with schizophrenia.

The primary aim of the current study was to empirically devise a staging approach (according to an approximation based on illness duration) using the PANSS model in a very large sample of stabilized patients with schizophrenia of varying ages. A second aim was also to explore the pattern and quality of psychopathology especially between the sexes, since better understanding of the clinical picture could facilitate attempts at staging.
2. Materials and methods

2.1 Study sample

The study population included patients with a DSM-IV or DSM-5 diagnosis of schizophrenia (APA, 2000, 2013), including first-episode patients. There was much effort to exclude organic mental disorders and more specifically dementia of any kind, according to the clinical judgment of the investigators. Participants were either inpatients prior to discharge or outpatients and were collected in a number of clinical settings, including academic units, clinics and hospitals across different countries.

Eligible patients were stabilized patients, and all were treated with medication based on their therapists’ judgment. There were no interventions associated with the current study. Patients were excluded if they had a coexisting diagnosis of substance abuse or dependence or a concurrent medical or neurological disorder according to their medical records.

All clinical evaluations were performed by trained psychiatrists before clinic or hospital discharge. The study obtained approval by the Research Ethical Committee of the Aristotle University Medical School, Thessaloniki Greece and the other participating centers. Informed consent was obtained from all patients after a detailed description of the study procedures.

Twenty-nine centers from 25 countries around the world participated in the study and contributed a total of 2358 patients (table 1).
2.2 Measurements

The study collected socio-demographic information on patients with schizophrenia (age and sex) together with assessment using the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 1987; Kay et al., 1988; Kay, 1990; Kay and Sevy, 1990; Kay and Sandyk, 1991). The PANSS is a 30-item rating scale developed by Kay and colleagues (Kay et al., 1987) to assess dimensions of schizophrenia symptoms and their severity. Items were initially compacted to resolve three scales: Positive (7 items), Negative (7 items), and General Psychopathology (GP) (16 items). In this study we used the modified version which includes four dimensions: Positive, Negative, GP and Excited symptoms (Kay and Sevy, 1990). Trained interviewers administered the PANSS during structured clinical interviews and scored items on a scale from 1 (asymptomatic) to 7 (extremely symptomatic).

Duration of the illness was defined as time since the first development of clear psychotic symptoms. This was achieved in a heterogeneous way; for some patients very precise data were available while for others the information came from interviewing the patients and their family.

2.3 Definition of First Episode of Schizophrenia (FES) patients

The term First Episode Psychosis (FEP) was first used in the context of schizophrenia (Targum, 1983) but today it includes a broad spectrum of psychotic disorders. There is no consensus in the literature concerning the exact nature and the criteria to define FEP (Keshavan and Schooler, 1992; Taylor and Perera, 2015). First Episode Schizophrenia (FES) emerged with the development of early intervention programs but the benchmark
for the beginning of this first episode remains undefined (Breitborde et al., 2009). In our study sample it concerns the first experience of symptoms by the patient (Farde et al., 1990) which we regard as the most appropriate method since the patient may have experienced a significant period of duration of untreated psychosis prior to reaching services or have made previous, unsuccessful attempts to access treatment (Lincoln et al., 1998).

While the literature frequently deals with the issue of defining the onset of the first episode, less has been discussed concerning until when it should be considered to be a real ‘first episode’, since many patients never remit and experience a single chronic episode throughout their lives. While FES with several years duration might not be conceptually valid, since chronicity is evident in the absence of remission, patients are still experiencing their first and single psychotic episode. Since refractory patients number approximately 23% and the majority (approximately 84%) of them are already refractory during their first episode, this subgroup would correspond to 20% of our FES patients and likely includes those whose FES lasts more than 18 months (Demjaha et al., 2017).

Among the 602 patients who were initially considered as experiencing FES, 484 (80.39%) had a duration of illness since onset of no more than 18 months, 523 (86.87%) of no more than 2 years; 545 (90.53%) of no more than 3 years; 558 (92.69%) of no more than 4 years and 568 (94.35%) of no more than 5 years. Thirty-four (5.65%) had an illness duration of more than 5 years. Therefore, the FES sample was split into an early group with duration of illness no longer than 18 months (FES-E; N=484), a middle group with a duration between 18 months and 3 years (FES-M, N=61) and a late group with a duration longer than 3 years (FES-L, N=57).
2.4 Data analyses

Demographic and PANSS data were calculated as frequencies (%), means, standard deviations and range. Analysis of Covariance (ANCOVA) was performed on an exploratory basis to examine for differences between groups. Correlations were assessed with the calculation of the Pearson R.

The methodology included two phases. During the first phase, exploratory factor analysis (EFA) was performed using a principal component analysis (PCA) with varimax normalized rotation and the factors were selected on the basis of an eigenvalue > 1 (Dziuban and Shirkey, 1974) which is the standard for such an analysis. The cut-off of loading values to group individual items under specific factors, were chosen in an arbitrary way but by taking into consideration the need to attribute every item to a factor and as few as possible under two or more factors. This was done by choosing the loadings >0.40. If two items cross-loaded to more than one factor with loadings >0.40, then all those were chosen and the item was considered to load on multiple factors. If only loadings below 0.40 existed, then all those >0.30 were chosen and the item was considered to load on multiple factors. PCA was also used to examine the stability of the extracted factor structure between the two sexes and in FES patients. The aim was to recognize reliable and valid latent structures concerning this specific study sample and to compare these with findings in the literature.

The second phase included an attempt to explore the presence of stages. There is no external ‘gold standard’ and in a previous study, age was used as a proxy because duration of illness was unavailable for that study sample (Dragioti et al., 2017). In the current study sample, duration of illness correlates moderately with age (R=0.45).
Staging was approached by plotting the factor scores (obtained during the first phase) vs. duration of illness and the identification of points in illness development with a shift in the curve of any factor score. The lines were smoothed with the use of weight distances with least squares method. This procedure fits a curve to the data by calculating a polynomial (second-order) regression for each value on the X variable scale to determine the corresponding Y value such that the influence of the individual data points on the regression (i.e., the weight, see the Stiffness option on the plot Fitting dialog) decreases with their distance from the particular X value. This approach provides a sensitive method for revealing non-salient overall patterns of data. Due to measurement error, such patterns can be hard to identify by simply looking at the scatterplot, although if revealed, they may turn out to be interpretable and reliable, and thus the method could be used to identify patterns so as to develop quantitative models since the smoothing procedure often consists of segments that cannot easily be described by one function (Strutz, 2016). This is essentially an ‘optical’ method and it has many subjective elements. As such it is open to debate.

The third phase concerned the attribution of a specific stage to all the subjects of the study sample and testing for differences between stages. The exact method will be described together with the respective results since its description prerequires knowledge of the results.

The fourth phase included Discriminant Function Analysis with stages as grouping variable and all the individual PANSS items as predictors.

Finally Linear Regression analysis was used in order to develop functions that will allow to calculate factor scores (dependent variables) from the classic PANNS subscale scores (P, N, GP, EC; used as independent variables). These functions could allow the staging of patients whose data are available only in the forms of PANSS subscales and...
also could allow the characterization of study samples whose PANSS scores are reported only as means of the classic PANSS subscales.

3. Results

3.1 Sociodemographic characteristics

The study population consisted of 2358 patients; 929 females (39.40%) and 1429 males (60.60%), aged 37.21±11.87 years old (range 16-81 years) with the DSM-IV or -5 diagnosis of schizophrenia (APA, 2000, 2013). Among these, 602 (25.53%) were in their first episode (mean duration 1.20±2.48 years). Thirty-four of them were chronic patients whose first episode never resolved and had a duration >5 years. Their age at onset was 26.16±8.07 years and their illness duration was 11.05±10.93 years (range 0-54). They were either inpatients (prior to release) or outpatients and were collected in a number of clinical settings including academic units and mental hospitals from different countries (table 1).

3.2. Exploratory factor analysis of PANSS

The PCA model resulted in five factors based on eigenvalues above 1. These explained 59% of the total variance (table 2), in contrast to the model proposed by Kay and Sevy (Kay and Sevy, 1990). Factor complexity was also observed; more than one item cross-loaded on more than one factor (for example, items P2, N5 and N7).

The first factor included items N1 through N7, G7, G13, G15 and G16 corresponding to a Negative domain; the second factor included items P1, P2, P3, P5, P6, G9 and G12.
corresponding to a Positive domain; the third factor included items G1, G2, G3, G4 and G6 corresponding to a Depression and Anxiety domain (General Psychopathology); the fourth factor included items P4, P7, G8 and G14 corresponding to an Excitement and Hostility domain and the fifth factor included items P2, N5, N7, G5, G10 and G11 corresponding to a Neurocognitive domain. The positive and negative domains were abbreviated Po and Ne respectively to be easily distinguishable from the classical P and N subscales of the PANSS.

Differences between males and females were minimal (webappendix Table A). Male factor analysis was identical to the results of the whole sample with the exception that G13 and G15 were also included in the Neurocognitive domain. In females the positive factor does not include P5 which is allocated to the Excitement and Hostility domain; the Neurocognitive domain does not include items G13 and G15, which belong only to the General Psychopathology domain.

To verify the results, centers were randomly allocated into three groups. The first group included 976 participants, the second 631 and the third 751 participants. Factor Analysis was performed separately with the participants of each center group in order to test the assumption that there could be a center bias in the results. The results are shown in webappendix table B and suggest a five factor solution for the first and second groups and a six factor solution for the third group of centers. While the overall structure seems stable, some variability among these three factor models exists suggesting the presence of a minor center bias.
3.3 Differences among subgroups

ANCOVA with sex as grouping variable, standard PANSS subscales as dependent variables and age and duration of illness as covariates returned a significant effect for sex (Wilks=0.984, F=9.59, Effect df=4, Error df=2351, p<0.001) as well as for age (Wilks=0.994, F=3.26, Effect df=4, Error df=2351, p<0.01) and duration (Wilks=0.975, F=14.99, Effect df=4, Error df=2351, p<0.001). The results were different when the factor scores of the current PCA were used as dependent variables; there was a significant effect for sex (Wilks=0.986, F=6.82, Effect df=5, Error df=2350, p<0.001) and duration (Wilks=0.961, F=18.97, Effect df=5, Error df=2350, p<0.001) but not for age (Wilks=0.997, F=1.22, Effect df=5, Error df=2350, p=0.297). The Scheffe post hoc test revealed significant differences between the two sexes in the N subscale (p<0.001) and the Ne (p<0.001) and DA factor scores (p=0.004), suggesting that females had less negative symptoms but more depression and anxiety (table 3).

Although the classical subscales, factor scores and domain scores are highly intercorrelated with R values ranging between 0.8-0.9, the behavior of these different rating methods is quite different and the scale scores are closer to reality.

The use of ANCOVA to test for differences between FES-E and non-FES patients (with age and duration as covariates) returned significant effects when the classical PANSS subscales were used for FES (Wilks=0.987, F=7.48, Effect df=4, Error df=2233, p<0.001) as well as for age (Wilks=0.991, F=4.97, Effect df=4, Error df=2233, p=0.001) and duration (Wilks=0.975, F=14.13, Effect df=4, Error df=2233, p<0.001). The Scheffe post hoc test returned significant differences only concerning the N subscale between FES-E and non-FES patients (p<0.001). When the factor scores were used there was a significant effect for FES (Wilks=0.987, F=5.76, Effect df=5, Error
df=2232, p<0.001) as well as for duration (Wilks=0.955, F=21.25, Effect df=5, Error df=2232, p=0.001) but not for age (Wilks=0.995, F=2.14, Effect df=5, Error df=2232, p=0.058). The Scheffe post hoc test returned significant differences concerning the Po and Ne factor scores between FES-E and non-FES patients (both at p<0.001). The respective means and standard deviations are shown in table 3.

3.4 Identification of illness stages

The plot of factor scores vs. duration of illness is shown in figure 2.

As described in the 'methods' section, the identification of stages was done with the inspection of the plot. Therefore it inherently has subjective biases and is open to discussion, but still it reflects a fair interpretation of the picture.

In figure 2 it is obvious that the factor scores (their lines are smoothed with the distance weighted least squares method) are not monotonous but they change through time and a different factor emerges as duration increases.

The points that define stage change are those that mark a change in the pattern of symptoms. In this way four distinct major stages can be identified:

Stage 1 lasts three years on average. During this stage positive symptoms (Po) are dominant but they tend to remit with the passage of the time. During the same time negative symptoms (Ne) as well as depression and anxiety (DA) are stable but excitement and hostility (EH) increases and the stage ends when they replace positive symptoms as the dominant symptomatology.

Stage 2 lasts nine years on average. During this stage, excitement/hostility (EH) are dominant and continue to increase. Positive (Po) symptoms tend to remit further and stabilize, while negative (Ne) symptoms, depression and anxiety (DA) and the
neurocognitive deficit (Ncog) start to increase and the stage ends when they overrun positive symptoms. The stage ends when depression and anxiety overrun excitement and hostility as the dominant feature in the symptomatology. It can be divided into two sub-stages:

Stage 2a lasts three years on average. During this period positive symptoms (Po) tend to remit further while excitement and hostility (EH) continue to increase. Additionally, during this phase, negative (Ne) symptoms as well as depression and anxiety (DA) start to increase and the sub-stage ends when they exceed positive symptoms. The neurocognitive deficit (Ncog) is stable.

Stage 2b lasts six years on average. During this stage, excitement/hostility (EH) and positive (Po) symptoms stabilize, negative (Ne) symptoms, depression and anxiety (DA) continue to rise and neurocognitive (Ncog) impairment also starts to rise. The sub-stage ends when DA exceed EH as the dominant feature in symptomatology.

Stage 3 lasts 13 years on average. During this period, depression and anxiety (DA) are the dominant feature and continue to rise slowly; at the end of the period they reach a zenith. Negative (Ne) symptoms and neurocognitive deficit (Ncog) continue to rise and the stage ends when Ncog exceeds DA as the dominant feature. It can be divided into two sub-stages of roughly equal duration:

Stage 3a: Excitement/hostility (EH) continues to decline but is still a prominent component of the clinical picture. This sub-stage ends when negative (Ne) and positive (Po) symptoms and neurocognition (Ncog) overrun it.

Stage 3b: Excitement/hostility (EH) together with positive (Po) symptoms contribute least to psychopathology which is dominated by depression, anxiety, negative symptoms and neurocognitive impairment.
Stage 4 and final stage is characterized by an exponential increase in neurocognitive deficit (Ncog) and on average it starts 25 years after illness onset. It can be divided into two sub-stages:

Stage 4a lasts 15 years on average and is characterized by a robust increase in neurocognitive impairment (Ncog) and a less robust increase in negative symptoms (Ne). The other symptom clusters decline. Decreases in depression and anxiety are prominent and the sub-stage ends when they contribute least to the clinical picture.

Stage 4b starts approximately 40 years after illness onset and is characterized by a prominent neurocognitive deficit (Ncog) that dominates the clinical picture. Negative symptoms decline and are replaced by excitement/hostility as the second most important element.

The plotting of factor scores against duration separately for males and females suggested the presence of the same stages (webappendix figure A). The only difference was that the 1st and 2nd stages appeared to be shorter and occurring earlier in females but differences were not significant.

There seems to be some effect of country/center since there was a difference between duration of illness among countries. There was a significant correlation (p<0.05) between the percentage of cases classified in each stage by country and the mean duration of illness by country concerning stages 1 (R=-0.43) and 4(R=0.48). Both findings were eliminated when Sweden was taken out of the analysis. The related data are shown in webappendix table H and webappendix figure B. The use of ANCOVA with country as grouping variable, duration of illness as covariate and factor scores as dependent variables showed a significant differences among countries concerning all factor scores (Wilks’ Lambda: 0.5059; F(120,11446)=14.1827; p < 0.001). Approximately two thirds of countries differed from each other concerning each factor
score and each one of them differed from one to eight others but no clear pattern of differences was present.

3.5 Development of a method to identify stage of illness for the individual patient

The identification of illness stages was based on factor scores as described in the previous section. Therefore the first step in order to stage an individual patient is to calculate her/his factor score. The calculation of this score can be achieved by using factor score coefficients that are provided in webappendix table C. The distribution of patients in the various stages is shown in table 4 and the characteristics of each stage in terms of age, age at onset, duration of illness and factor scores and the relationship between them are shown in tables 5 and 6.

The specific criteria utilized to group patients into stages are shown in table 5. More than half of the patients (55%) fulfill these strict criteria, while the rest fall into grey zones between stages, being located on the continuum of these stages classifications.

The Discriminant Function Analysis returned significant results for the four main stages (Wilks' Lambda: 0.1411; F(90,6958)=71.417; p < 0.001). However classification into sub-stages using a single function was less accurate; therefore a two-step process seems more appropriate: first to classify into main stages and second to sub-classify within that stage. The correct classification of cases according to this method is approximately 90% (webappendix table D). The discriminant functions for sub-stages are also very efficient with a similar percentage of cases correctly classified (webappendix tables E-G).
The use of ANCOVA with sex and main stage as grouping factors, age as covariate and duration of illness as dependent variable indicated no significant sex by stage interaction. Similar results were obtained when sub-stage was used (p<0.1).

3.6 Calculation of factor scores from the classic subscales scores

The results of the Linear Regression analysis with factor scores (Po, Ne, DA, EH and Ncog) as dependent variables and the classic PANSS subscales (P, N, GP and EC) as predictors suggested that the calculation of factor scores is possible for some but not for all factors (table 7).
4. Discussion

4.1 Factor structure of the PANSS

The current study utilizes probably the largest sample of patients in an effort to develop a staging system for schizophrenia with the use of PANSS ratings alone. Results suggest that PANSS reflects a five-factor model (Positive-Po, Negative-Ne, Depression/Anxiety-DA, Excitement/Hostility-EH and Neurocognitive impairment-Ncog) with significant differences in the allocations of individual items in comparison to the standard structure. There were no differences between males and females concerning the factor structure. However females had lower negative and higher depression/anxiety factor scores.

The literature suggests that the most stable and reliable model which repeats itself across various studies includes three dimensions: positive, negative, and disorganization (Peralta and Cuesta, 2001). There seems to be no effect of sex (Peralta and Cuesta, 1995) or chronicity (Mojtabai, 1999; Peralta and Cuesta, 2000) but there seem to be effects of education, marital status and race, with African Americans being significantly less likely than Caucasians to report having a past or current diagnosis of depression or mania (Dixon et al., 2001). However, it is important to bear in mind that the psychometric tools used rather than the clinical picture could essentially determine the outcome since they define whether a particular cluster of symptoms will be detected or not (Peralta and Cuesta, 2001). This is also in accord with the observation that the dimensions found in schizophrenia studies are not specific for schizophrenia but rather of psychosis in general and they apply to the whole spectrum of psychotic illnesses including affective psychoses (Peralta and Cuesta, 2001). It is possible that there are no
specific features to characterize schizophrenia; on the contrary there is only a more severe genetic loading and more frequent early insults, which impair neurodevelopment, especially of the medial temporal lobe (Murray et al., 2004).

Beyond these three basic dimensions, the literature suggests that more detailed and complex models could also be valid. There is evidence supporting the existence of eight major dimensions of psychopathology: psychosis, disorganization, negative, mania, depression, excitement, catatonia and lack of insight. The dimensional structure of symptoms becomes even more complex if one considers that these large dimensions can be further divided into more elementary components (Peralta and Cuesta, 2001).

The findings of the Principal Component Analysis in the current study support a 5-factor model and are in accord with some but not all previous studies some of which suggest more complex models (Nakaya et al., 1999a; Lykouras et al., 2000; Fresan et al., 2005; Van den Oord et al., 2006; van der Gaag et al., 2006; Liemburg et al., 2013; Dragioti et al., 2017; Walsh-Messinger et al., 2018). Overall, the general agreement is that the most stable and reliable models contain three dimensions, that is, Positive, Negative, and Disorganization (Peralta and Cuesta, 1994), though reporting of a supplementary hostility and depression factors is frequent in the literature (Hwu et al., 2002).

Sex differences have been previously reported; males are more likely to display negative symptoms and cognitive deficits with psychomotor abnormalities while females are more likely to display affective symptoms (Pandurangi et al., 1994; Leung M.D and Chue M. R. C. Psych, 2000; Walsh-Messinger et al., 2018). A recent study, focusing on sex differences in the symptom structure of the PANSS found differences regarding the manifestation of a depression factor in women and a hostility factor in men (Walsh-Messinger et al., 2018). However other studies did not find any influence
of sex on the factor structure of the PANSS (Hayashi et al., 2002) which is in accordance with the findings of the current study.

The results of the current study are consistent with a previously reported six factor solution in a large sample of 500 patients (Van den Oord et al., 2006). That factor structure included negative, positive, excited/activation, anxious-depressed/dysphoric, disorganized/autistic preoccupation and withdrawal factors but not a cognitive domain. Four of these are comparable to four of our factors, but the item synthesis was somewhat different. The participants, in the aforementioned study, were chronic outpatients or stable inpatients, a sample quite similar to the present study. They are also in accord with a previous study which allocated several N items in the neurocognitive domain (Galderisi et al., 2013).

4.2 Staging

The present analysis also suggests that it is possible to stage patients with the use of the PANSS alone. The ‘external criterion’ used was duration of illness, as defined by age of the patient and age at onset. While neither age nor duration of illness are identical with staging, duration is considered a reasonable proxy, age at onset variance notwithstanding. Age, duration and number of episodes correlate with each other (Emmerson et al., 2009).

The analysis indicated four main stages, each of which (except from the first) is subdivided into two substages. Staging was almost identical between males and females. Each stage is characterized by a dominant domain of psychopathology (Po for the 1st stage, EH for the 2nd, DA for the 3rd and Ncog for the 4th while the least dominant aspects of psychopathology determine the sub-stages (table 5). Stages were not
independent of each other but rather there is a smooth transition from the previous to the next stage, as if along a continuum rather than with discrete steps. Importantly, age and duration of illness played a significant role, however they were not as determining as one might expect; for example almost 21% of FES-E patients were classified to the final stage 4 with more than 8% belonging to 4b. This is significantly lower than the respective percentages concerning non-FES patients (26.48% and 11.16% respectively) but the difference is modest. Concerning stage 1, the picture is reversed. The above suggest that the trajectory of schizophrenia generally follows a homogenous course but speed of progression is highly heterogeneous. On average, changes in specific domains take several years to appear.

This staging proposal has a number of consequences. First, it suggests that the actual psychotic period of schizophrenia does not extend to most of its timeline but rather is restricted to the initial stages. Other clinical components then become more prominent. Whether this constitutes a true illness progression or reflects the results of treatment with antipsychotics which have a primary beneficial effect on positive symptoms is unclear. This however is in partial accordance with the suggestion that after 3 years there is an attenuation in the relapse rate (Wunderink et al., 2013) or possibly a change in their pattern with more frequent and shorter relapses during the early stages making way for less frequent but more chronic episodes (Andreasen et al., 2013).

Another consequence is that depression and anxiety seem to be predominant for a significant proportion of illness duration, and this length is greater that the time during which positive symptoms predominate. This may help to explain why patients with schizophrenia are often treated with antidepressants and why such treatment may be beneficial not only for depressive symptoms but also for both positive and negative symptomatology (Rummel et al., 2005, 2006; Helfer et al., 2016). The presence of the
3rd stage and the shorter duration of stages 1 and 2 in females raises the question of whether the widely believed better course and outcome of schizophrenia in females is essentially an effect of an earlier occurrence of stage 3 in females. However, this assumption is not supported by the findings of the current study using ANCOVA that duration does not differ between sexes of the same stage of illness.

Stability of the neurocognitive deficit and changes in positive and negative domains during the first two stages might explain the failure of studies to identify a relationship between duration of untreated psychosis and neurocognitive function and the heterogeneous results concerning its relationship with positive and negative symptoms (Ho et al., 2003; Compton, 2004; Norman et al., 2005; Perkins et al., 2005; McGlashan, 2006; Barnes et al., 2008; Melle et al., 2008; Primavera et al., 2012; Penttila et al., 2014; Qin et al., 2014; Rund, 2014; Albert et al., 2017; Sullivan et al., 2018). The lack of relationship between DUP and neurocognition is impressive (Bora et al., 2018) but under the current staging model is expected given the worsening of neurocognitive impairment late in the course of the illness. These results are consistent with the presence of rather mild neurocognitive deficits at illness onset that remain stable for decades, in accordance with many previously reports (Bora and Murray, 2014).

An important question is whether stages 2 and 3 actually imply the presence of an affective component which has largely been neglected so far (Fountoulakis et al., 2017a), but in terms of duration it predominates the lives of patients with schizophrenia. Stage 2 is characterized by excitement and hostility and in females it seems grandiose ideas also have a role. Irritability and uncooperativeness seems to dominate the picture and it is reasonable to consider the possibility of sub-threshold chronic mania without euphoria. The core concepts of schizophrenia and manic depression were developed by Emil Kraepelin but the existence of intermediate and mixed cases is held by many
authors to strongly argue in favour a ‘unitary psychosis theory’ (Einheitspsychose), as conceived in the works of Joseph Guislain (1797-1860), Ernst Albrecht von Zeller (1804-1877), Wilhelm Griesinger (1817-1868) and Heinrich Neumann (1814-1888) and as reflected in the works of contemporary authors (Berrios and Beer, 1994; Angst, 2002; Lake and Hurwitz, 2006; Moller, 2008; van Os, 2009; van Os and Kapur, 2009; Van Os, 2010, 2011; van Os and Linscott, 2012). However the failure of lithium to impact core schizophrenia would argue against this, if one assumes that lithium response has some trait biomarker capacity (Leucht et al., 2004).

In 1905 Specht argued that all psychoses were derived from mood abnormalities, which is not in accordance with the current staging model where mood disorder follows psychotic episodes. However, since then many authors have associated paranoia with depression and delusional guilt thus questioning the distinction between schizophrenia and psychotic mood disorders (Specht, 1905; Abrams et al., 1974; Pope and Lipinski, 1978; Doran et al., 1986; Lake and Hurwitz, 2006; Maier et al., 2006).

The history of nomenclature and classification can provide us important insights into the staging model of the current paper. Jacob Kasanin (1897-1946) was the first to coin the term schizoaffective psychosis in 1933 (Kasanin, 1933; Kasanin, 1994) to describe a group of psychotic mood disorder patients according to contemporary classification systems. In 1937, Langfeldt described the so-called ‘schizophreniform psychoses’ with many affective clinical elements and favourable outcome (Langfeldt, 1937), while Kant in 1940 described ‘recovered schizophrenics’ as having a higher number of affective psychoses among their relatives in comparison to schizophrenia patients (Kant, 1940).

Valuable contributions in nosology were made by Kurt Schneider (1887-1967) who described for the first time ‘concurrent’ and ‘sequential’ forms of schizoaffective psychosis (Schneider, 1973; Marneros, 1983, 2003).
Recent research suggests that most patients with schizophrenia will probably experience significant depression. In the current model this corresponds to the 3rd stage and includes approximately 26% of patients on cross-sectional estimate. In the literature the cross-sectional prevalence of depression in patients with schizophrenia is less than 10%, with lifetime prevalence up to 75% although fewer patients experience the full syndrome of depression. It is difficult to assess true depressive symptomatology since many aspects (e.g. motor retardation, social withdrawal) overlap with negative symptomatology. Traditionally there has been a focus on post-psychotic depression which is considered to be a result of demoralization and increasing insight following resolution of the psychotic episode (Conley et al., 2007; Buckley et al., 2009). Previous research has identified three dimensions of depression (retardation, depressive core symptoms, and accessory depressive symptoms) (Muller et al., 1999).

On the other hand, there are limited data on the occurrence of mania in patients with schizophrenia, at least partially because the presence of mania changes the diagnosis. By definition no patient with schizophrenia ever experiences a manic or hypomanic episode. One group in the 1970s implied that about 95% of their sample of patients diagnosed with paranoid schizophrenia actually suffered from psychotic mania (Abrams et al., 1974). Irritability, excitement and violence could be explained at least partially as a direct result of a mood disorder. It has been reported that violence during the onset of the illness might be a direct consequence of delusions while in chronically ill and disabled patients violence is related to the effects of impoverished and constricted lives, with patients having difficulty controlling their impulsive behavior (Taylor, 1985; Walsh et al., 2002). The current staging does not support the ‘reactive’ nature of excitation, hostility and irritability. It does not support their relationship to delusions either, since they seem to occur when psychosis is in at least partial remission.
The current paper is probably one of the few to specifically address the issue of staging on the basis of clinical symptoms. It is important to note that our results come from ‘stabilized’ patients, that is, patients already treated with antipsychotics and in partial remission. It is also known that antipsychotics are efficacious as well against manic-like symptoms, excitation and hostility and therefore it could be suggested that more patients with schizophrenia might manifest a more severe form of this kind of symptomatology especially during the acute psychotic episode. Probably as a result of the psychometric tools used (which in most studies are restricted to ‘classic’ schizophrenia scales such as the PANSS and SAPS/SANS but not YMRS), manic-like symptoms have been identified only in a minority of reports that have studied the factor structure of clinical symptoms of schizophrenia in samples similar to ours (Lorr et al., 1962; Kitamura et al., 1995; Peralta and Cuesta, 1999; Van Os et al., 1999; Fountoulakis et al., 2017a), or in recent-onset cases (van Os et al., 1996; McGorry et al., 1998), but rarely in follow-up studies (Willem Van der Does et al., 1995; Salokangas, 1997).

Another limitation of the literature is that there are some subtle features that are not routinely assessed and thus they are incompletely studied. For example anhedonia which is considered to constitute an important characteristic of schizophrenia, seems to correspond to an anticipatory but not a consummatory pleasure deficit (Gard et al., 2007). Probably as some authors suggest, the presence of mood symptoms is predictive of better outcome but in contrast, core ‘schizophrenic’ symptoms were not predictive of a worse outcome (Astrup and Noreik, 1966; Noreik et al., 1967; Holmboe et al., 1968; Pope and Lipinski, 1978). According to our staging model this could reflect the different stages of these patients at the time of assessment. It is important to note, however, that a number of latter studies have also disputed the predictive value of mood
symptoms (Croughan and Robins, 1974; Welner et al., 1977b; Welner et al., 1977a; Gift et al., 1980; Moller et al., 1982). Emotional processing deficits in schizophrenia are both state and trait dependent (Maat et al., 2015) and there is no evidence for a generalized hedonic deficit in patients with schizophrenia or schizoaffective disorder (Oorschot et al., 2013).

On the other hand a hierarchical classification of symptoms has been reported. This implies but does not prove a possible causal relationship. For example formal thought disorder was reported to correlate with mania (Cuesta and Peralta, 2011) and mood symptoms with paranoia (Lake, 2008) but depression was unrelated to the neurocognitive deficit (Escamilla, 2001; Harvey, 2011).

Previous research found that the stage of illness plays an important role on the disorganization factor (Dollfus and Petit, 1995; Nakaya et al., 1999b; Nakaya et al., 1999a) and this reflects our finding concerning the 4th and final stage where the neurocognitive impairment together with excitement/hostility are the dominant domains in psychopathology. From a clinical point of view, we can infer that at this stage, the burden of illness becomes progressively greater, and this is especially true concerning neurocognitive function, as a result of neuroprogression due to chronicity and recurrent psychotic episodes. This finding is in agreement with evidence suggesting that the neurocognitive impairment may constitute a core syndrome of schizophrenia (Lin et al., 2014) and that at least in a significant subgroup of patients it determines the final outcome in old age (Kurtz, 2005).

These results are supported by the concept of staging which assumes a developmental character of the illness (Agius et al., 2010; McGorry et al., 2010; Fountoulakis et al., 2018c; Fountoulakis et al., 2018b; Fountoulakis et al., 2018a). Additionally one could say that schizophrenia is characterized by a psychotic, a manic (irritable not euphoric),
a depressive and finally a dementia stage, which is in accord with previous studies that report a strong mood and especially manic component in the psychopathology of schizophrenia (Fountoulakis et al., 2017a). However the extend these results are influenced by current treatment status and selective efficacy of medication of specific clusters of symptoms remains to be determined (Garriga et al., 2016; Fountoulakis, 2017; Fountoulakis et al., 2017b).

Previous efforts to stage schizophrenia arrived at a three-stages model (Dragioti et al., 2017). These three stages suggest that psychosis at initial stages is to some extent limited and allows some kind of insight. At the same time it also triggers reactive depression and reactive behaviors, including aggression. As the disease progresses the patient enters a disorganized state where behaviors are largely independent from thought content and the events in the environment. The third stage is characterized by neurocognitive impairment. Thus, these stages of illness seem to reflect a progress from preserved insight and more coherent mental functioning to disorganization and neurocognitive impairment. It also suggests that the sexes differ in terms of the relationship of psychotic features (and especially catatonia) with neurocognition. An important clinical implication is that the PANSS can be a practical tool in schizophrenia patients when screening for clinical stages. It may also be crucial for psychiatrists in allocation of treatment to patients according to sex and stage of illness.

Another interesting finding of the current study is that not only the factor structure of the PANSS but also the staging model is identical in males and females without the presence of any substantial differences. This is in contrast with much of the literature (Pandurangi et al., 1994; Leung M.D and Chue M. R. C. Psych, 2000; Walsh-Messinger et al., 2018) but in accordance with some studies (Hayashi et al., 2002).
4.3 Strengths and limitations of the current study

This is the first study to report on the correlation between current symptomatology and duration of the illness and to utilize this relationship in order to develop a clinically relevant staging model.

The strengths of the current study include the large study sample which is the largest so far in the literature investigating the factor structure of the PANSS as well as efforts to clinically stage schizophrenia. In contrast to other studies we did not exclude any basic component of the disease’s symptomatology (Kelley et al., 2013; Khan et al., 2013a; Khan et al., 2013b; Fong et al., 2015; Wu et al., 2015). An additional strength is the multi-center and multinational characteristic of the sample. The finding that the results and the models are identical in males and females further strengthen their reliability and probably their validity.

The most important limitation of the study is that it utilized a cross sectional design with the utilization of limited demographic and clinical info or treatment resistance status of the patients and these were combined with lack of long-term follow up of patients and in the absence of an external ‘golden standard’. This absence was intentional and intrinsic to a design that aimed to staging patients on the basis of their current clinical picture alone and with only illness duration as an additional clue. This was chosen as an approach because anamnestic data are not reliable in contrast to the assessment of the present state. For a similar reason only stabilized patients were included. In order to develop a staging method easily applicable in the everyday clinical practice, the neurocognitive function was assessed only on the basis of the clinical judgment of the rater and in the frame of PANSS scoring rather than with sophisticated neuropsychological assessment. Also in elderly patients the presence of a comorbid
underlying vascular or Alzheimer’s pathology cannot be ruled out. It is important to mention that the current staging proposal is based on group means, not on individual patient trajectories.

There were differences among countries and centers in terms of age and duration of the disorder, as well as in provided health care and benefits; it is unlikely these had a major effect on results however such an effect cannot be excluded. The effect of premature mortality and the way survival affected the results especially at later stages is also unknown.

A further limitation is that the study sample was not epidemiologically selected and therefore may not represent the general population of patients with schizophrenia. Instead it represents those patients with at least less than ideal remission who remained in contact with mental health services for several years. It is unclear whether the differences observed among countries were because of this selection method, however such a non-systematic heterogeneity among countries is expected and does not seem to determine the overall outcome and results of the study.

Finally, the method for the identification of stages falls in the grey zone between quantitative and qualitative methodology and both the method and its results are open to debate. Although antipsychotic medication is believed to influence only positive psychotic symptoms, their effect on the model remains to be studied specifically.

4.4 Conclusion

The current study tested the PANSS-based ‘pyramidal model’ of schizophrenia and arrived at a five-factor solution that elaborates the literature. It includes positive, negative, anxiety/depression, excitement/hostility and neurocognition as domains and
proposes the re-arrangement of individual PANSS items within this framework. It also proposes a four-stage staging model with additional sub-stages. These stages and sub-stages are well characterized by clinical symptoms and add to our understanding of schizophrenia as a progressive chronic illness.
References

Kant O (1940) Types and analyses of the clinical pictures of recovered schizophrenics. Psychiat Q 14:676-700.

Lake CR (2008) Hypothesis: grandiosity and guilt cause paranoia; paranoid schizophrenia is a psychotic mood disorder; a review. Schizophrenia bulletin 34:1151-1162.
Lake CR, Hurwitz N (2006) Schizoaffective disorders are psychotic mood disorders; there are no schizoaffective disorders. Psychiatry research 143:255-287.

Specht G (1905) Chronic mania and paranoia.

. Zbl Nervenheilk:590.

the factorial structure of the Positive and Negative Syndrome Scale. The PANSS Study Group. Psychopathology 30:263-274.

Figure 1: The classic five-factor model of Stanley Kay and colleagues

Figure 2: Plot of factor scores (y-axis) vs. duration of illness (x-axis) and identification of stages

Contributors

All authors contributed equally.

Acknowledgments

MB is supported by a NHMRC Senior Principal Research Fellowship (APP1059660 and APP1156072).

Conflict of Interest

None pertaining to the current study. Several of the authors have received grants and support from the Pharmaceutical industry but this had no influence on the results and interpretation and the writing of the current study

Source of funding

None
<table>
<thead>
<tr>
<th>Country</th>
<th>Total study sample (N=2358)</th>
<th>FES-E (N=484)</th>
<th>FES-M (N=61)</th>
<th>FES-L (N=57)</th>
<th>non-FES (N=1756)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>M</td>
<td>F</td>
<td>N</td>
</tr>
<tr>
<td>Belgium</td>
<td>365</td>
<td>15.48</td>
<td>246</td>
<td>67.40</td>
<td>119</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>31</td>
<td>1.31</td>
<td>17</td>
<td>54.84</td>
<td>14</td>
</tr>
<tr>
<td>Canada</td>
<td>30</td>
<td>1.27</td>
<td>15</td>
<td>50.00</td>
<td>15</td>
</tr>
<tr>
<td>Czech Rep</td>
<td>556</td>
<td>23.58</td>
<td>302</td>
<td>54.32</td>
<td>254</td>
</tr>
<tr>
<td>Finland</td>
<td>10</td>
<td>0.42</td>
<td>4</td>
<td>40.00</td>
<td>6</td>
</tr>
<tr>
<td>France</td>
<td>69</td>
<td>2.93</td>
<td>47</td>
<td>68.12</td>
<td>22</td>
</tr>
<tr>
<td>Germany</td>
<td>56</td>
<td>2.37</td>
<td>40</td>
<td>71.43</td>
<td>16</td>
</tr>
<tr>
<td>Greece</td>
<td>184</td>
<td>7.80</td>
<td>112</td>
<td>60.87</td>
<td>72</td>
</tr>
<tr>
<td>Hungary</td>
<td>108</td>
<td>4.58</td>
<td>51</td>
<td>47.22</td>
<td>57</td>
</tr>
<tr>
<td>India</td>
<td>47</td>
<td>1.99</td>
<td>30</td>
<td>63.83</td>
<td>17</td>
</tr>
<tr>
<td>Ireland</td>
<td>98</td>
<td>4.16</td>
<td>80</td>
<td>81.63</td>
<td>18</td>
</tr>
<tr>
<td>Italy</td>
<td>50</td>
<td>2.12</td>
<td>33</td>
<td>66.00</td>
<td>17</td>
</tr>
<tr>
<td>Latvia</td>
<td>74</td>
<td>3.14</td>
<td>30</td>
<td>40.54</td>
<td>44</td>
</tr>
<tr>
<td>Lithuania</td>
<td>50</td>
<td>2.12</td>
<td>27</td>
<td>54.00</td>
<td>23</td>
</tr>
<tr>
<td>Montenegro</td>
<td>50</td>
<td>2.12</td>
<td>24</td>
<td>48.00</td>
<td>26</td>
</tr>
<tr>
<td>Nigeria</td>
<td>93</td>
<td>3.94</td>
<td>43</td>
<td>46.24</td>
<td>50</td>
</tr>
<tr>
<td>Poland</td>
<td>55</td>
<td>2.33</td>
<td>28</td>
<td>50.91</td>
<td>27</td>
</tr>
<tr>
<td>Portugal</td>
<td>18</td>
<td>0.76</td>
<td>7</td>
<td>38.89</td>
<td>11</td>
</tr>
<tr>
<td>Romania</td>
<td>37</td>
<td>1.57</td>
<td>18</td>
<td>48.65</td>
<td>19</td>
</tr>
<tr>
<td>Russia</td>
<td>50</td>
<td>2.12</td>
<td>47</td>
<td>94.00</td>
<td>3</td>
</tr>
<tr>
<td>Serbia</td>
<td>50</td>
<td>2.12</td>
<td>45</td>
<td>90.00</td>
<td>5</td>
</tr>
<tr>
<td>South Africa</td>
<td>71</td>
<td>3.01</td>
<td>58</td>
<td>81.69</td>
<td>13</td>
</tr>
<tr>
<td>Spain</td>
<td>60</td>
<td>2.54</td>
<td>40</td>
<td>66.67</td>
<td>20</td>
</tr>
</tbody>
</table>

© The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
<table>
<thead>
<tr>
<th>Country</th>
<th>N</th>
<th>Males</th>
<th>Females</th>
<th>Early (FES-E)</th>
<th>Middle (FES-M)</th>
<th>Late (FES-L)</th>
<th>Non-FES</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>39</td>
<td>1.65</td>
<td>21</td>
<td>53.85</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Turkey</td>
<td>107</td>
<td>4.54</td>
<td>64</td>
<td>59.81</td>
<td>43</td>
<td>3</td>
<td>75.00</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>2358</td>
<td>100.00</td>
<td>1429</td>
<td>60.60</td>
<td>929</td>
<td>285</td>
<td>58.88</td>
<td>199</td>
<td>36.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1079</td>
</tr>
</tbody>
</table>

Table 1: Composition of the study sample in terms of country of origin, sex and first episode of schizophrenia (FES) status.

FES-E: Early group of no more than 18 months of illness duration (N=484)
FES-M: Middle group with duration between 18 months and 3 years
FES-L: late group with duration of more than 3 years
Non-FES: Patients who are not during their FES
M: males; F: females; N: number of subjects; % percentage
<table>
<thead>
<tr>
<th>Factor 1 Ne</th>
<th>Factor 2 Po</th>
<th>Factor 3 DA</th>
<th>Factor 4 EH</th>
<th>Factor 5 Ncog</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 Delusions</td>
<td>0.10</td>
<td>0.87</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td>P2 Conceptual disorganization</td>
<td>0.23</td>
<td>0.47</td>
<td>0.10</td>
<td>0.16</td>
</tr>
<tr>
<td>P3 Hallucinatory behaviour</td>
<td>0.13</td>
<td>0.68</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>P4 Excitement</td>
<td>-0.16</td>
<td>0.31</td>
<td>0.24</td>
<td>0.55</td>
</tr>
<tr>
<td>P5 Grandiosity</td>
<td>-0.14</td>
<td>0.46</td>
<td>0.02</td>
<td>0.26</td>
</tr>
<tr>
<td>P6 Suspiciousness/persecution</td>
<td>0.18</td>
<td>0.70</td>
<td>0.21</td>
<td>0.30</td>
</tr>
<tr>
<td>P7 Hostility</td>
<td>0.11</td>
<td>0.24</td>
<td>0.07</td>
<td>0.81</td>
</tr>
<tr>
<td>N1 Blunted affect</td>
<td>0.80</td>
<td>0.04</td>
<td>0.07</td>
<td>-0.03</td>
</tr>
<tr>
<td>N2 Emotional withdrawal</td>
<td>0.85</td>
<td>0.09</td>
<td>0.07</td>
<td>0.04</td>
</tr>
<tr>
<td>N3 Poor rapport</td>
<td>0.79</td>
<td>0.10</td>
<td>-0.05</td>
<td>0.22</td>
</tr>
<tr>
<td>N4 Passive/apathetic social withdrawal</td>
<td>0.80</td>
<td>0.11</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td>N5 Difficulty in abstract thinking</td>
<td>0.46</td>
<td>0.23</td>
<td>-0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>N6 Lack of spontaneity & flow of conversation</td>
<td>0.79</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>N7 Stereotyped thinking</td>
<td>0.45</td>
<td>0.31</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>G1 Somatic concern</td>
<td>0.06</td>
<td>0.23</td>
<td>0.47</td>
<td>0.02</td>
</tr>
<tr>
<td>G2 Anxiety</td>
<td>0.13</td>
<td>0.18</td>
<td>0.74</td>
<td>0.13</td>
</tr>
<tr>
<td>G3 Guilt feelings</td>
<td>0.04</td>
<td>0.07</td>
<td>0.68</td>
<td>0.01</td>
</tr>
<tr>
<td>G4 Tension</td>
<td>0.11</td>
<td>0.17</td>
<td>0.64</td>
<td>0.31</td>
</tr>
<tr>
<td>G5 Mannerisms & posturing</td>
<td>0.31</td>
<td>0.04</td>
<td>0.21</td>
<td>0.10</td>
</tr>
<tr>
<td>G6 Depression</td>
<td>0.30</td>
<td>0.01</td>
<td>0.71</td>
<td>0.05</td>
</tr>
<tr>
<td>G7 Motor retardation</td>
<td>0.62</td>
<td>-0.05</td>
<td>0.32</td>
<td>-0.03</td>
</tr>
<tr>
<td>G8 Uncooperativeness</td>
<td>0.25</td>
<td>0.18</td>
<td>0.07</td>
<td>0.75</td>
</tr>
<tr>
<td>G9 Unusual thought content</td>
<td>0.08</td>
<td>0.70</td>
<td>0.18</td>
<td>0.15</td>
</tr>
<tr>
<td>G10 Disorientation</td>
<td>0.13</td>
<td>0.11</td>
<td>0.03</td>
<td>0.24</td>
</tr>
<tr>
<td>G11 Poor attention</td>
<td>0.31</td>
<td>0.19</td>
<td>0.24</td>
<td>0.23</td>
</tr>
<tr>
<td>G12 Lack of judgment & insight</td>
<td>0.24</td>
<td>0.58</td>
<td>-0.12</td>
<td>0.29</td>
</tr>
<tr>
<td>G13 Disturbance of volition</td>
<td>0.52</td>
<td>0.04</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>G14 Poor impulse control</td>
<td>0.07</td>
<td>0.16</td>
<td>0.16</td>
<td>0.72</td>
</tr>
<tr>
<td>G15 Preoccupation</td>
<td>0.43</td>
<td>0.31</td>
<td>0.26</td>
<td>0.16</td>
</tr>
<tr>
<td>G16 Active social avoidance</td>
<td>0.64</td>
<td>0.23</td>
<td>0.26</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Explained variance

<table>
<thead>
<tr>
<th>Proportion of total</th>
<th>Explained variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>19%</td>
<td>5.56</td>
</tr>
<tr>
<td>12%</td>
<td>3.66</td>
</tr>
<tr>
<td>10%</td>
<td>2.89</td>
</tr>
<tr>
<td>9%</td>
<td>2.72</td>
</tr>
<tr>
<td>9%</td>
<td>2.70</td>
</tr>
</tbody>
</table>

Total variance explained 59%

Table 2: Factor analysis with the use of the total study sample. When males and females were used in separate factor analyses the differences were negligible.

Po: Positive
Ne: Negative
DA: Depression/Anxiety
EH: Excitement/Hostility
Ncog: Neurocognitive impairment

© The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
--- | --- | --- | --- | --- | ---
| Mean | SD |

Classical subscales

PANSS-N	18.12	7.45	18.78	7.45	17.11	7.34	16.84	6.86	16.38	7.34	15.56	6.58	18.62	7.57
PANSS-GP	31.40	10.72	31.50	10.67	31.26	10.79	31.13	10.00	29.02	9.12	27.67	8.94	31.69	10.98
PANSS-EC	8.89	4.15	8.88	4.03	8.89	4.33	8.72	4.39	7.95	2.91	8.49	5.11	8.98	4.08

Factor scores

	Po	0.00	1.00	0.01	1.01	-0.02	0.98	0.14	1.01	-0.06	1.12	0.11	1.22	-0.04	0.98
Ne	0.00	1.00	0.08	1.00	-0.13	0.99	-0.13	1.02	-0.20	1.07	-0.43	0.93	0.06	0.99	
DA	0.00	1.00	-0.05	0.99	0.07	1.01	-0.05	0.88	-0.13	0.70	-0.26	0.86	0.03	1.04	
EH	0.00	1.00	-0.01	0.98	0.02	1.03	0.00	1.04	-0.17	0.70	0.09	1.38	0.00	0.98	
Ncog	0.00	1.00	0.02	1.01	-0.03	0.99	-0.06	0.92	-0.04	0.81	-0.12	0.91	0.02	1.03	

Table 3: Means and standard deviation of the classical PANSS subscales and factor scores according to the current factor analysis in the various study sample groups. According to ANCOVA analyses there were differences between the two sexes in the N subscale (p<0.001) and the N (p<0.001) and DA factor scores (p=0.004). There were also differences only concerning the N subscale (p<0.001) and concerning the P and N factor scores between FES-E and non-FES patients (both at p<0.001).

DA: Depression/Anxiety
EC: Excitement Component
EH: Excitement/Hostility
GP: General Psychopathology
N: Negative subscale of the PANSS (classic)
P: Positive subscale of the PANSS (classic)
Po: Positive factor
Ne: Negative factor
Ncog: Neurocognitive impairment

© The Author(s) 2019. Published by Oxford University Press on behalf of CINP.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
<table>
<thead>
<tr>
<th>Stage</th>
<th>Total sample</th>
<th>Males</th>
<th>Females</th>
<th>FES patients</th>
<th>Non-FES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>643</td>
<td>27.27</td>
<td>388</td>
<td>27.15</td>
<td>255</td>
</tr>
<tr>
<td>3</td>
<td>613</td>
<td>26.00</td>
<td>354</td>
<td>24.77</td>
<td>259</td>
</tr>
<tr>
<td>3a</td>
<td>295</td>
<td>12.51</td>
<td>165</td>
<td>11.55</td>
<td>130</td>
</tr>
<tr>
<td>3b</td>
<td>318</td>
<td>13.49</td>
<td>189</td>
<td>13.23</td>
<td>129</td>
</tr>
<tr>
<td>4</td>
<td>592</td>
<td>25.11</td>
<td>375</td>
<td>26.24</td>
<td>217</td>
</tr>
<tr>
<td>4a</td>
<td>344</td>
<td>14.59</td>
<td>215</td>
<td>15.05</td>
<td>129</td>
</tr>
<tr>
<td>4b</td>
<td>248</td>
<td>10.52</td>
<td>160</td>
<td>11.20</td>
<td>88</td>
</tr>
</tbody>
</table>

Table 4: Distribution of the patients in the different stages
FES: First Episode of Schizophrenia
FES-E: early group of no more than 18 months of illness duration
FES-M: middle group with duration between 18 months and 3 years
FES-L: late group with duration of more than 3 years
Non-FES: patients not in their first episode
<table>
<thead>
<tr>
<th>Stage/substage</th>
<th>Po</th>
<th>Ne</th>
<th>DA</th>
<th>EH</th>
<th>Ncog</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Importance</td>
<td>mean</td>
<td>SD</td>
<td>Importance</td>
<td>mean</td>
</tr>
<tr>
<td>1</td>
<td>Highest</td>
<td>1.22</td>
<td>0.81</td>
<td>Low</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>Middle</td>
<td>-0.38</td>
<td>0.77</td>
<td>Middle</td>
<td>-0.14</td>
</tr>
<tr>
<td>2a</td>
<td>Middle</td>
<td>0.11</td>
<td>0.78</td>
<td>Middle</td>
<td>0.23</td>
</tr>
<tr>
<td>2b</td>
<td>Low</td>
<td>-0.79</td>
<td>0.46</td>
<td>Middle</td>
<td>-0.46</td>
</tr>
<tr>
<td>3</td>
<td>Low</td>
<td>-0.28</td>
<td>0.78</td>
<td>Middle</td>
<td>0.00</td>
</tr>
<tr>
<td>3a</td>
<td>Low</td>
<td>-0.27</td>
<td>0.74</td>
<td>Middle</td>
<td>-0.16</td>
</tr>
<tr>
<td>3b</td>
<td>Lowest</td>
<td>-0.29</td>
<td>0.81</td>
<td>Middle</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
<td>-0.35</td>
<td>0.70</td>
<td>Middle</td>
<td>0.11</td>
</tr>
<tr>
<td>4a</td>
<td>Low</td>
<td>-0.48</td>
<td>0.70</td>
<td>Middle</td>
<td>0.02</td>
</tr>
<tr>
<td>4b</td>
<td>middle</td>
<td>-0.17</td>
<td>0.66</td>
<td>Middle</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table 5: Characteristic patterns of factor scores combinations in the different stages
DA: Depression/Anxiety
EH: Excitement/Hostility
Ne: Negative
Ncog: Neurocognitive impairment
Po: Positive
<table>
<thead>
<tr>
<th>Stage</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.06</td>
<td>11.92</td>
<td>16</td>
<td>81</td>
<td>26.29</td>
<td>8.33</td>
<td>12</td>
<td>77</td>
<td>9.77</td>
<td>10.39</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>36.22</td>
<td>11.24</td>
<td>18</td>
<td>79</td>
<td>26.69</td>
<td>8.45</td>
<td>7</td>
<td>71</td>
<td>9.53</td>
<td>9.72</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>2a</td>
<td>36.49</td>
<td>11.52</td>
<td>18</td>
<td>79</td>
<td>27.01</td>
<td>9.29</td>
<td>7</td>
<td>71</td>
<td>9.48</td>
<td>9.97</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>2b</td>
<td>35.99</td>
<td>11.00</td>
<td>19</td>
<td>76</td>
<td>26.42</td>
<td>7.67</td>
<td>14</td>
<td>54</td>
<td>9.56</td>
<td>9.52</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>37.43</td>
<td>10.76</td>
<td>17</td>
<td>74</td>
<td>26.24</td>
<td>7.35</td>
<td>10</td>
<td>59</td>
<td>11.19</td>
<td>10.20</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>3a</td>
<td>36.85</td>
<td>10.04</td>
<td>18</td>
<td>65</td>
<td>26.96</td>
<td>7.37</td>
<td>13</td>
<td>53</td>
<td>9.89</td>
<td>9.41</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>3b</td>
<td>37.97</td>
<td>11.37</td>
<td>17</td>
<td>74</td>
<td>25.57</td>
<td>7.29</td>
<td>10</td>
<td>59</td>
<td>12.41</td>
<td>10.75</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>39.07</td>
<td>13.31</td>
<td>17</td>
<td>73</td>
<td>25.39</td>
<td>8.11</td>
<td>7</td>
<td>64</td>
<td>13.68</td>
<td>12.77</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>4a</td>
<td>39.60</td>
<td>13.20</td>
<td>17</td>
<td>71</td>
<td>25.43</td>
<td>7.95</td>
<td>10</td>
<td>64</td>
<td>14.17</td>
<td>12.60</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>4b</td>
<td>38.33</td>
<td>13.46</td>
<td>18</td>
<td>73</td>
<td>25.33</td>
<td>8.35</td>
<td>7</td>
<td>59</td>
<td>13.00</td>
<td>12.99</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>All groups</td>
<td>37.22</td>
<td>11.87</td>
<td>16</td>
<td>81</td>
<td>26.16</td>
<td>8.07</td>
<td>7</td>
<td>77</td>
<td>11.06</td>
<td>10.94</td>
<td>0</td>
<td>54</td>
</tr>
</tbody>
</table>

Table 6: Age, age at disease onset and duration of illness in the different stages
Table 7: Results of regression analysis with Factor scores (Po, Ne, DA, EH and Ncog) as dependent variables and the classic PANSS subscales (P, N, GP and EC) as predictors. The aim was to arrive at reliable functions to calculate factor scores from subscale scores. Overall the results are satisfactory only for some of the factor scores.
Figure 1

Syndromes are represented at the angles and center, diagnostic subtypes at the sides, and polarized dimensions by the transversal arrows.

Figure 2

The figure illustrates the progression of various factors over the illness duration in years. The stages are labeled from 1 to 4, with sub-stages 2a, 2b, 3a, 3b, 4a, and 4b. The factors include:

- Positive (Po)
- Negative (Ne)
- Depression and Anxiety (DA)
- Excitement-Hostility (EH)
- Neurocognitive impairment (Ncog)

The graph shows how these factors change over time, with factor scores ranging from -2.0 to 2.0.