Running head: SWRL2SPIN: A TOOL FOR TRANSFORMING SWRL RULE BASES IN OWL ONTOLOGIES TO OBJECT-ORIENTED SPIN RULES

SWRL2SPIN: A tool for transforming SWRL rule bases in OWL ontologies to object-oriented SPIN rules

Nick Bassiliades

Author Note

Nick Bassiliades, Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece, nbassili@csd.auth.gr

Correspondence concerning this article should be addressed to:

Nick Bassiliades, Department of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece. E-mail: nbassili@csd.auth.gr
Paper title:

SWRL2SPIN: A Tool for Transforming SWRL Rule Bases in OWL Ontologies to Object-Oriented SPIN Rules

Abstract

Semantic Web Rule Language (SWRL) combines OWL (Web Ontology Language) ontologies with Horn Logic rules of the Rule Markup Language (RuleML) family. Being supported by ontology editors, rule engines and ontology reasoners, it has become a very popular choice for developing rule-based applications on top of ontologies. However, SWRL is probably not going to become a WWW Consortium standard, prohibiting industrial acceptance. On the other hand, SPIN (SPARQL Inferencing Notation) has become a de-facto industry standard to represent SPARQL rules and constraints on Semantic Web models, building on the widespread acceptance of SPARQL (SPARQL Protocol and RDF Query Language). In this paper, we argue that the life of existing SWRL rule-based ontology applications can be prolonged by converting them to SPIN. To this end, we have developed the SWRL2SPIN tool in Prolog that transforms SWRL rules into SPIN rules, considering the object-orientation of SPIN, i.e. linking rules to the appropriate ontology classes and optimizing them, as derived by analysing the rule conditions.

Keywords:

SWRL, SPIN, SPARQL, OWL, Rules, Ontologies, Semantic Web, Prolog, Transformation
1. Introduction

Rule-based systems have been extensively used in several applications and domains, such as e-commerce, personalization, games, businesses and academia. They offer a simplistic model for knowledge representation for both domain experts and programmers; experts usually find it easier to express knowledge in a rule-like format and programmers usually find rule-based programming easier to understand and manipulate, decoupling computation from control. The first is performed by the rules whereas the latter is determined by the rule engine itself, that is when and how to apply the rules.

The Semantic Web initiative of the World Wide Web Consortium (W3C, 2013) works on standards, technologies and tools in order to give to the information a well-defined meaning, enabling computers and people to work in better cooperation. Ontologies can be considered as a primary key towards this goal since they provide a controlled vocabulary of concepts, each with explicitly defined and machine processable semantics. The Web Ontology Language (OWL) (Hitzler et al., 2012) is the W3C recommendation for creating and sharing ontologies on the Web. It provides the means for ontology definition and specifies formal semantics on how to derive new information.

There are mainly two modeling paradigms for the Semantic Web (Horrocks et al., 2005). The first paradigm is based on the notion of the Description Logics (Baader et al., 2010) on which the OWL is based. In this case, the semantics of OWL ontologies can be handled by DL reasoning systems, such as Pellet (Sirin et al., 2007), RacerPro (Haarslev et al., 2012), Fact++ (Tsarkov & Horrocks, 2006) and HermiT (Glimm et al., 2014) that reuse existing DL algorithms, such as tableau-based algorithms (Baader & Sattler, 2001). The other paradigm is based on Horn logic, whereas a subset of the OWL semantics is transformed into rules that are used by a rule engine in order to infer implicit knowledge. There are major differences between these two paradigms, including computational and expressiveness aspects. For example, the DL reasoning engines have a rather inefficient instance reasoning performance, whereas rules are insufficient to model certain situations related to the open nature of the Semantic Web. The selection of the most suitable modeling paradigm depends on the domain and the needs of the application.

Since description logics and Horn logic are orthogonal in the sense that neither of them is a subset of the other (Grosof et al., 2003), there are interesting combinations of ontologies and rules, namely their intersection, which is OWL 2 RL, and their union, namely SWRL. OWL 2 RL (Motik et al., 2012) is an OWL 2 profile is aiming at applications that require scalable reasoning without sacrificing too much expressive power. This is achieved by defining a syntactic subset of OWL 2 which is amenable to implementation using rule-based technologies, namely it is the largest syntactic fragment of OWL2 DL that is implementable using rules. The design of OWL 2 RL was inspired by Description Logic Programs (Grosof et al., 2003) and pD* (ter Horst, 2005). Obviously, OWL 2 RL is a decidable language, but one that is necessarily less expressive than either the description logic or rules language from which it is formed.

SWRL (Horrocks et al., 2004; 2005) is a semantic web rule language that combines OWL ontologies with Horn Logic rules of the RuleML family of rule languages (“RuleML”, n.d.), extending the set of OWL axioms to include Horn-like rules. SWRL is considerably more powerful than either OWL DL or Horn rules alone; however, key inference problems for SWRL are undecidable (Horrocks et al., 2005). Decidability can be regained by restricting the form of admissible rules, by imposing a suitable safety condition (Motik et al., 2005).

Being supported by the Protégé ontology editor (“Protégé”, n.d.) as well as by popular rule engines and ontology reasoners, such as Jess (Friedman-Hill, 2003), Drools (“Drools”, n.d.)
and Pellet (Sirin et al., 2007), SWRL has become a very popular choice for developing rule-based applications on top of ontologies (Billet et al., 2011; Dautov et al., 2017; Herrero-Zazo et al., 2015; Khan et al., 2017; Matheus et al., 2005; Namahoot et al., 2016; O’Connor et al., 2008; Somodevilla et al., 2015). However, SWRL being around for more than 10 years now, it is most probable that it will never become a W3C standard; therefore, its scope is difficult to reach out to the industrial world.

On the other hand, SPIN (Knublauch et al., 2011) has become a de-facto industry standard to represent SPARQL rules and constraints on Semantic Web models, building on the widespread acceptance of the SPARQL query language (Harris & Seaborne, 2013) for querying and processing Linked Open Data. SPARQL is well supported by numerous engines and databases. This means that SPIN rules can be directly executed on the databases and no intermediate engines with communication overhead need to be introduced. Also, SPIN is more expressive than SWRL, because SPARQL has various features such as UNION, OPTIONAL, FILTER and NOT EXISTS expressions. SPIN has an object-oriented model that arguably leads to better maintainable models than SWRL’s flat rule lists. Finally, SPIN goes far beyond being just a rule language, and also provides means to express constraints and to define new functions and templates.

Furthermore, recent industrial rule-based applications (Fortineau et al., 2014; Aarnio et al., 2016; Samavi & Consens, 2018) have identified some SWRL limitations for modelling application business rules, such as the Open World Assumption and the difficulties to manage rule complexity and information update, proposing the use of SPARQL/SPIN as a rule language for OWL based models, to overcome the above issues.

For all the above reasons, in this paper, we argue that the life and expressiveness of existing SWRL rule-based ontology applications can be extended by being transformed into SPIN. To this end, we have developed a tool called SWRL2SPIN, using SWI-Prolog (Wielemaker et al., 2012) that takes as input an OWL ontology that contains an SWRL rule base and transforms SWRL rules into SPIN rules in the same ontology, taking into consideration the object-oriented scent of SPIN, i.e. linking rules to the appropriate ontology classes as derived by analyzing the rule conditions. Furthermore, conditions of transformed rules are optimized according to the hosting class by re-ordering condition elements. Our SWRL2SPIN tool is accompanied by a rich implementation of SWRL built-ins (41); however, the way these built-ins have been translated provides room for extensibility in the future to increase coverage.

So, concluding, the main contribution of the paper is that it introduces a tool for automatically transforming and optimizing flat SWRL rules to object-oriented SPIN rules, and its novelty lies on the fact that, to the best of our knowledge, there is no other tool in the literature that does that.

In the rest of the paper, we briefly review related works on SWRL rule transformations for interchange and/or execution reasons in section 2, and then, we overview SWRL and SPIN syntax and semantics, focusing on their RDF vocabularies, in sections 3 and 4, respectively. In section 5 we present our tool, its transformation methodology, how rules are embedded into classes, how they are optimized and how built-ins have been implemented. In section 6 we evaluate the tool and finally, in section 7, we conclude.

2. Related Work

To the best of our knowledge there is no other tool for transforming SWRL rule bases to SPIN rules. In this section, we briefly review existing approaches to transforming SWRL rules into another rule formalism, mainly for execution reasons, i.e. to be able to implement an SWRL rule engine by re-using another rule engine. The purpose of our work is rather to transform
SWRL rules into SPIN rules so that SPIN-compliant ontology / rule editors can be used to maintain / extend these rule bases / applications. Thus, it is not exactly similar to just running SWRL rules, but it could also be viewed in this way, since TopSPIN (TopQuadrant, n.d.) is a rule engine that after the translation of SWRL rules into SPIN rules it is able to execute them and store the results within the OWL ontology.

DL-reasoners do not support the full specification of SWRL because the reasoning becomes undecidable. So, there are different approaches of combining OWL-DL with SWRL reasoning.

Translate SWRL into First Order Logic and demonstrate reasoning tasks with a theorem prover. The best-known implementation of this paradigm is Hoolet (Bechhofer, 2004), which is an implementation of an OWL-DL reasoner that uses the first order theorem prover Vampire (Riazanov & Voronkov, 2002) and supports SWRL (Horrocks et al., 2005).

Translate OWL-DL axioms into rules and give the axiom rules plus the translated SWRL rules to a rule engine. This approach cannot cover the full expressivity of OWL-DL due to many incompatibilities between Description Logics and Horn Logic. Examples of this paradigm are the implementations of the SWRLTab (O’Connor et al., 2005) of Protégé (“Protégé”, n.d.), such as the older SWRLJessTab plugin (Golbreich, 2004), which is available only for the v. 3.5 of Protégé and the newer SWRLDroolsTab plugin (“SWRL Drools Tab”, 2012), which is available both for Protégé 5.2 and 3.5. These plugins translate the ontology axioms into facts of the Jess (Friedman-Hill, 2003) and Drools (“Drools”, n.d.) production rule engines, respectively, and SWRL rules into production rules that materialize the conclusions of the rules as derived facts. Then the production rule engines run the SWRL rules along with the entailment rules that implement part of the DL-reasoning process and the results (materialized inferred axioms of the SWRL rules) are copied back to Protégé.

Other systems that support a similar functionality, using forward chaining rule engines are Bossam (Jang & Sohn, 2004), a forward chaining deductive (Datalog) rule engine that supports SWRL with minimal built-in support for math and string functions, and SWRL2COOL (Rigas et al., 2012) a translator of SWRL rules into CLIPS production rules to accompany the O-Device production rule-based OWL reasoner (Meditskos & Bassiliades, 2008), with also limited support for math and comparison built-ins.

There are also approaches (Hirankitti & Xuan, 2011; Samuel et al., 2008) to integrate OWL axioms and SWRL rules into backward chaining rule engines, such as Prolog, which also have limited built-in support. Furthermore, the SWRL-IQ plugin (Elenius, 2012) for Protégé 3.x supported backward chaining querying of OWL ontologies and SWRL rule reasoning based on XSB Prolog. SWRL-IQ supports 47 SWRL built-ins, including List built-ins.

Expand an existing OWL-DL reasoner based on the tableaux algorithm. Most popular DL-reasoners, such as Pellet (Sirin et al., 2007), HermiT (Glimm et al., 2014), Racer (Haarslev et al., 2012), do support SWRL reasoning for DL-safe rules. Pellet supports all the SWRL built-ins except for Lists and provides support for only the first 5 Built-ins for Date, Time, and Duration. Pellet will almost certainly never support the List built-ins because of OWL DL restrictions. However, all Date, Time, and Duration built-ins could be provided in the future. HermiT also supports SWRL DL-safe rules, but with no built-in support (Glimm et al., 2009). Racer (Haarslev et al., 2012) supports processing of rules in a SWRL-based syntax by translating them into nRQL rules; there is no evidence as to whether SWRL built-ins are supported. Protégé 5.2 (“Protégé”, n.d.) includes a Rules view in its Ontology Views that supports SWRL rules through the above DL reasoners.

KAON2 (Motik, n.d.), a rather different DL-reasoner based on reducing a SHIQ(D) knowledge base to a disjunctive Datalog program also supports the so-called DL-safe subset (Motik et al., 2005) of SWRL, but again without any evidence for built-in support. KAON2 can be integrated to Protégé through a DIG interface (Bechhofer, 2003).
Stardog (Stardog Union, 2018) is an RDF database or triplestore that rewrites queries to answer questions using SWRL inferences. Stardog supports two different syntaxes for defining rules. The first is native Stardog Rules syntax based on SPARQL. The second is the de facto standard RDF/XML syntax for SWRL. It has the advantage of being supported in many tools; but it’s syntax is awkward. Stardog supports 55 SWRL built-ins.

Finally, there are some works (Milanovic et al., 2009; Wang et al., 2010) that translate SWRL rules into a rule meta-model for rule interchange reasons among various rules formats, such as R2ML (REWERSE Rule Markup Language) (Milanovic et al., 2009; REWERSE, 2006) and RIF (Kifer & Boley, 2013; Wang et al., 2010). The purpose of these translations is merely the interchange of rules, preserving the basic SWRL atom semantics, but without covering the built-ins which are left to the implementer.

In a completely opposite setting, (Woensel et al., 2014) implemented a cross-platform performance benchmark framework for mobile reasoning engines that supplies 1) a generic, standards-based Semantic Web layer on top of existing mobile reasoning engines; and 2) a benchmark engine to investigate and compare mobile reasoning performance. The above platform supports the SPIN rule language as a uniform rule language and RDF as a uniform data model and language. The supplied benchmark rulesets and datasets are converted by the platform to the custom rule and data formats of the various supported reasoning engines, namely AndroJena (“Androjena”, n.d.), RDFQuery (“RDFQuery”, n.d.), RDFStore-JS (“RDFStore-JS”, n.d.) and Nools (“Nools”, n.d.). Therefore, the purpose of (Woensel et al., 2014) is to translate SPIN rules to other rule formats, whereas in our case SPIN is the target language of the translation. However, our SWRL2SPIN tool could play the role of the bridge between existing SWRL rule bases that need to be deployed on one of the reasoning engines supported by (Woensel et al., 2014). In this case, SWRL2SPIN would translate SWRL rules to SPIN rules and then the Mobile Benchmark Framework of (Woensel et al., 2014) would translate SPIN rules into the corresponding mobile reasoning engine rule format.

3. Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) (Horrocks et al., 2004) is a proposed language for the Semantic Web that can be used to express rules, combining OWL DL or OWL Lite with the Unary/Binary Datalog RuleML sublanguages of the Rule Markup Language. SWRL extends the set of OWL axioms to include Horn-like rules. It thus enables Horn-like rules to be combined with an OWL knowledge base. SWRL has the full power of OWL DL, but at the price of decidability and practical implementations. However, decidability can be regained by restricting the form of admissible rules, typically by imposing a suitable safety condition (Motik et al., 2005).

Rules are of the form of an implication between an antecedent (body) and consequent (head). The intended meaning can be read as: whenever the conditions specified in the antecedent hold, then the conditions specified in the consequent must also hold. Both the antecedent (body) and consequent (head) consist of zero or more atoms. An empty antecedent is treated as trivially true (i.e. satisfied by every interpretation), so the consequent must also be satisfied by every interpretation; an empty consequent is treated as trivially false (i.e., not satisfied by any interpretation), so the antecedent must also not be satisfied by any interpretation. Multiple atoms are treated as a conjunction. Note that rules with conjunctive consequents could easily be transformed (via the Lloyd-Topor transformations (Lloyd, 1987)) into multiple rules each with an atomic consequent. Atoms in these rules can be of the form $C(x)$, $P(x,y)$, $\text{sameAs}(x,y)$ or $\text{differentFrom}(x,y)$, where C is an OWL class description, P is an OWL property, and x, y are either variables, OWL individuals or OWL data values.
SWRL has various representation syntaxes: abstract, human readable, XML concrete and RDF concrete. Listing 1 shows an SWRL rule example in human readable syntax that states “when a student ?s attends a course ?c that is taught by a professor ?f, then the student ?s knows the professor ?f”. This SWRL rule extends the ontology shown in Figure 1, consisting of classes Student and Professor (subclasses of Person) and Course. Notice that we will use this rule throughout the paper as a running example for the transformation procedure of SWRL2SPIN.

Listing 1. Sample SWRL rule in human readable syntax

uni:s a swrl:Variable .
uni:c a swrl:Variable .
uni:f a swrl:variable .
[rdf:type swrl:Imp ;
 swrl:body [a swrl:AtomList ;
 rdf:first [a swrl:ClassAtom ;
 swrl:classPredicate uni:Student ;
 swrl:argument1 uni:2] ;
 rdf:rest [a swrl:AtomList ;
 rdf:first [a swrl:IndividualPropertyAtom ;
 swrl:propertyPredicate uni:attends ;
 swrl:argument1 uni:s ;
 swrl:argument2 uni:c] ;
 rdf:rest [a swrl:AtomList ;
 rdf:first [a swrl:IndividualPropertyAtom ;
 swrl:propertyPredicate uni:isTaughtBy ;
 swrl:argument1 uni:c ;
 swrl:argument2 uni:f] ;
 rdf:rest rdf:nil]] ;
 swrl:head [a swrl:AtomList ;
 rdf:first [a swrl:IndividualPropertyAtom ;
 swrl:propertyPredicate uni:knows ;
 swrl:argument1 uni:s ;
 swrl:argument2 uni:f] ;

Listing 2 shows how this rule is represented in the RDF concrete syntax. Rules are instances of the swrl:Imp class. The head and body of the rule are lists of atoms (swrl:AtomList); each atom can be one of classAtom, IndividualPropertyAtom, DatavaluedPropertyAtom, SameIndividualAtom, DifferentIndividualsAtom, or BuiltinAtom. All but the built-in atoms have one or two arguments (properties swrl:argumentNN); additionally, classAtom has a classPredicate.
property, whereas the PropertyAtoms have a propertyPredicate property. The BuiltinAtom construct has a list of arguments instead and the name of the built-in function. Arguments can be variables, declared as instances of the swrl:Variable class, datatype constants, in the Value^^Datatype format, or individuals, i.e. instances of an OWL class.

Figure 1. The ontology used in the example of Listing 1.

4. SPARQL Inferencing Notation

Modeling languages for the semantic web, such as RDF Schema (Brickley & Guha, 2014) and OWL (Hitzler et al., 2012), provide mechanisms for capturing the static structure of data, i.e. they are used to define classes, properties and relationships between these conceptual entities. While they define axiomatic definitions of data structures, describing general computational behavior of objects is not within their scope. On the other hand, object oriented languages provide well-known mechanisms for defining object behavior by describing classes and associating methods with class members. Object oriented methods often formalize how the modification of one attribute implies changes to other attributes. Another common purpose of methods is to capture constraints to ensure that the state of the objects remains within the bounds that the class designer had intended.

The SPARQL Inferencing Notation (SPIN) (Knublauch et al., 2011) combines concepts from object oriented languages, query languages, and rule-based systems to describe object behavior on the semantic web. One of the basic ideas of SPIN is to link class definitions with SPARQL queries to capture constraints and rules that formalize the expected behavior of those classes. SPARQL is used because it is an existing WC3 standard (Harris & Seaborne, 2013) with well-formed query semantics across RDF data, has existing widespread use amongst most RDF query engines and graph stores, and provides sufficient expressivity for both queries and general computation of data. To facilitate storage and maintenance, SPARQL queries are represented in RDF triples, using the SPIN SPARQL Syntax (Knublauch, 2011b).

The SPIN Modeling Vocabulary (Knublauch, 2011a) defines a collection of properties and classes that can be used to link RDFS and OWL classes with SPARQL queries. For example, the class ex:Department can define a property spin:rule that points to a SPARQL CONSTRUCT query that computes the value of ex:studentProfessorRatio based on the values of ex:enrolledStudents and ex:numberOfFaculty. These properties follow existing SPARQL standards, and the execution of these constructs can be efficiently handled by any SPARQL processor. Since SPIN is entirely represented in RDF, rules and constraints can be shared on the web together with the class definitions they are associated with. The attachment of rules to classes
also encourages a style in which rules are locally scoped and thus easier to maintain, avoiding
the spaghetti code of "flat" rule languages, such as SWRL.

Other important features of SPIN include (a) SPIN templates, which are parameterized
SPARQL queries, and (b) SPIN functions, i.e. user-defined SPARQL functions. Both are not
further discussed in the scope of this paper, since SWRL2SPIN does not use them.

The SPIN class description vocabulary defines several RDF properties that can be used to
attach SPARQL queries to classes. The property spin:rule can be used by SPIN reasoning en-
gines to construct inferred RDF triples from the currently asserted information in the model.
The SPARQL queries referenced by the SPIN properties are interpreted in the context of the
associated class. At run-time, the SPARQL variable ?this is (by default) pre-bound with in-
stances of the class and its sub-classes. Typically, the query itself does not need to bind ?this to
any value in the WHERE clause. The execution context (e.g., inference engine) will do this
before the query is executed.

SPIN takes an object-oriented world view on Semantic Web models, in which SPARQL
queries play a similar role to functions and methods. Inheritance (expressed using rdfs:subClas-
sOf) is treated in the sense that any query/rule defined for super-classes will also be applied to
subclasses. In other words, SPIN class descriptors can only "narrow down" and further restrict
what has been defined further up in the class hierarchy. In this spirit, global class descriptions
are those that are attached to the root class rdfs:Resource or its OWL equivalent owl:Thing.
Those global queries may not even mention ?this at all.

The property spin:rule links an rdfs:Class with a SPARQL CONSTRUCT query that de-
defines an inference rule that determines how additional triples can be inferred from what is stated
in the WHERE clause. For each binding of the pattern in the WHERE clause of the rule, the
triple templates from the CONSTRUCT clause are instantiated and added as inferred triples to
the underlying model. At query execution time, the SPARQL variable ?this is bound to the
current instance of the class.

The example in Listing 3 defines a SPIN rule (in textual SPARQL format), attached to class
uni:Student via the spin:rule property, that infers the value of the uni:knows property from
values of uni:attends and uni:isTaughtBy. Listing 4 shows how the same rule is represented
using the SPIN modeling vocabulary. Notice that this SPIN rule is equivalent to the SWRL rule
at Listing 1 and it is the result of the SWRL2SPIN translation procedure that will be presented
in Section 5.

Listing 3. Sample SPIN rule

```sparql
uni:Student
  a rdfs:Class;
spin:rule
  [ a sp:Construct;
    sp: text ""
    CONSTRUCT {
      ?this uni:knows ?faculty .
    }
    WHERE {
      ?this uni:attends ?course .
      ?course uni:isTaughtBy ?faculty
    }"
  ].
```

Listing 4. SPIN rule in modeling vocabulary

```sparql
[ a sp:Construct;
  sp:templates ([ sp:object spin:_this;
    sp:predicate uni:knows;
    sp:subject sp:_faculty ]);
```
SPIN rules are instances of the sp:Construct class; the rule “head” is defined with the sp:templates property whereas the sp:where property defines the rule “body”. The above properties contain lists of triple patterns (sp:subject, sp:predicate, sp:object). Other SPARQL query elements contained in rule “body” can be TriplePath, Filter, Bind, SubQuery, Optional, Union, NamedGraph, NotExists, Minus, Service, and Values. In the following we only present in detail the first four, since they are the only ones used in the SWRL2SPIN tool.

A TriplePath is similar to a triple pattern, but instead of an sp:predicate, has an sp:path property, whose value can be one of several types, sp:SeqPath being the most usual one. The sequential steps of the path are represented through consecutive sp:pathNN properties. The representation is more complex when arbitrary length path matching is involved, i.e. when the * operator is used.

Filter elements are blank nodes, instances of sp:Filter that have property sp:expression, pointing to an expression that can be evaluated to true or false. Expressions are actually function calls which are represented as instances of the function's URI. All other properties of expressions (or function calls) are interpreted as arguments, using consecutive sp:argNN properties. However, other property names can be used as well, depending on the function. Arguments can be either datatype constants or variables, which are blank nodes with an sp:varName property whose value is a string. E.g. the FILTER (y > 30) expression is shown in Listing 5.

The BIND keyword assigns a computed value to a variable. Bind assignments in the rule “body” are represented as instances of the class sp:Bind, having an sp:variable property to point at the variable on the right side of the assignment. The property sp:expression points to the root of the expression tree that delivers the computed value, in much a similar way to filter expressions (i.e. function calls). E.g., the expression BIND (x * 2 AS y) is shown in Listing 6.
The `SubQuery` element is used to embed SPARQL queries within other queries to achieve results, such as limiting the number of results from some sub-expression within the query. Although conditions are flat in SWRL and no embedding is possible, in SWRL2SPIN the `SubQuery` element is used to translate the `swrlb:length` built-in (see Section 5.3). Sub-queries are represented as blank instances of the class `sp:SubQuery`. The property `sp:query` points to the nested query, which is a blank instance of the appropriate SPARQL query type, e.g. `sp:Select`, with properties `sp:resultVariables` for representing the projection variables and `sp:where` for the body of the query.

The rest of the SPARQL query elements were not needed for the translation, at least as far as the current implementation of SWRL built-in functions concerns. A brief explanation for each element is given below. The `Optional` element is used for optional triple patterns in the graph, whereas all SWRL atoms are mandatory. The `Union` element would represent disjunction in the rule body; however, SWRL does not allow disjunction. The `NamedGraph` element is used to query graphs other than the default, whereas SWRL does not support such an option. The `NotExists` and `Minus` elements are used to support negation in SPARQL, whereas SWRL is a monotonic rule language with no negation support at all. The `Service` element is used to instruct a federated query processor to invoke a portion of a SPARQL query against a remote SPARQL endpoint. Such distributed rule execution features are not possible in SWRL. Finally, the `Values` element is used to assign variables with pre-specified constant values in a SPARQL query. Such a feature is not present in SWRL, where variables can only take values from matching ontology terms.

Concluding, compared to SWRL, SPIN offers the following advantages

- It is based on SPARQL, a well-established query language and protocol, which is well-supported by numerous engines and databases. This means that SPIN rules can be directly executed on the databases and no intermediate engines with communication overhead need to be introduced.
- It is more expressive, because SPARQL has various features such as UNION and FILTER expressions.
- It has an object-oriented model that leads to better maintainable models and faster rule execution than SWRL’s flat rule lists. Specifically, the SPIN rule engine does not have to check all rules at all times, as it is the case for SWRL, but instead rules are checked incrementally when new instances of a certain class are inserted (or modified) in the ontology. This leads to better rule execution performance.
- It provides means to express constraints and to define new functions and templates, besides being a mere rule language.

A more detailed presentation of the SPIN modelling vocabulary and syntax can be found at the respective references and are out of the scope of this paper.
5. SWRL2SPIN

The SWRL2SPIN tool accepts at its input an OWL ontology with SWRL rules embedded in the ontology using the RDF concrete syntax of SWRL, as exported by tools such as Protégé combined with the SWRLtab plugin. The tool produces at its output an OWL ontology (just copying the input one) extended by SPIN rules that have been created by translating the SWRL rules. SPIN rules are embedded inside their corresponding classes, following the OO nature of SPIN, instead of having a flat rule base as in SWRL. Furthermore, the \textit{this} variable of SPIN is used to identify instances of the rule-embedding class, therefore SWRL condition elements that identify the class of the corresponding instances are removed, speeding-up, thus, rule execution. Finally, the same SWRL may involve instances of multiple classes, so our tool generates multiple versions / views of a rule, optimized for each of the classes, separately.

Formally, in SWRL2SPIN the input is an ontology $O_{\text{inp}} = \langle C, P, I, R_{\text{swrl}} \rangle$, where C is the set of classes of the ontology, P is the set of properties, I is the set of instances, and R_{swrl} is the set of SWRL rules, and the output is the ontology $O_{\text{out}} = \langle C', P, I, R_{\text{spin}} \rangle$, where C' is the set of the modified classes of the input ontology and R_{spin} is the set of SPIN rules that have been translated from SWRL rules and linked from within the classes in C'. Therefore, it holds that:

$$C' = \{ \langle c, r_1^c, r_2^c, \ldots, r_n^c \rangle | c \in C \land (\forall i, r_i^c \in R_{\text{spin}}) \}$$

The above means that a class maybe linked to several SPIN rules according to the translation procedure that we will present below. The translation procedure is a mapping from a single SWRL rule to one or more SPIN rules:

$$\text{TrnslRule}: R_{\text{swrl}} \rightarrow \wp(R_{\text{spin}})$$

The main procedure for translating a SWRL rule into a SPIN rule involves mapping classes and properties of the RDF concrete syntax of SWRL into corresponding classes and properties of the SPIN modeling vocabulary, in a recursive way starting from \textit{swrl:Imp} instances, following an almost one-to-one mapping scheme shown in Table 1. The only exception to the straightforward mapping is the SWRL built-ins whose translation is customized for each function. We will discuss translation of built-ins in section 5.3.

<table>
<thead>
<tr>
<th>SWRL</th>
<th>SPIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{swrl:Imp}</td>
<td>sp:Construct</td>
</tr>
<tr>
<td>\textit{swrl:head}</td>
<td>sp:templates</td>
</tr>
<tr>
<td>\textit{swrl:body}</td>
<td>sp:where</td>
</tr>
<tr>
<td>\textit{swrl:ClassAtom}</td>
<td>sp:subject <Arg></td>
</tr>
<tr>
<td>\textit{swrl:classPredicate} <Class></td>
<td>sp: predicate rdf:type</td>
</tr>
<tr>
<td>\textit{swrl:argument1} <Arg></td>
<td>sp:object <Class></td>
</tr>
<tr>
<td>\textit{swrl:IndividualPropertyAtom}</td>
<td>sp:subject <Arg1></td>
</tr>
<tr>
<td>\textit{swrl:propertyPredicate} <Prop></td>
<td>sp: predicate <Prop></td>
</tr>
<tr>
<td>\textit{swrl:argument1} <Arg1></td>
<td>sp:object <Arg2></td>
</tr>
<tr>
<td>\textit{swrl:argument2} <Arg2></td>
<td></td>
</tr>
<tr>
<td>\textit{swrl:SameIndividualAtom}</td>
<td>sp:subject <Arg1></td>
</tr>
<tr>
<td>\textit{swrl:argument1} <Arg1></td>
<td>sp: predicate owl:sameAs</td>
</tr>
<tr>
<td>\textit{swrl:argument2} <Arg2></td>
<td>sp:object <Arg2></td>
</tr>
<tr>
<td>\textit{swrl:DifferentIndividualsAtom}</td>
<td>sp:subject <Arg1></td>
</tr>
<tr>
<td>\textit{swrl:argument1} <Arg1></td>
<td>sp: predicate owl:differentFrom</td>
</tr>
<tr>
<td>\textit{swrl:argument2} <Arg2></td>
<td>sp:object <Arg2></td>
</tr>
<tr>
<td>\textit{swrl:DatavaluedPropertyAtom}</td>
<td>sp:subject <Arg1></td>
</tr>
<tr>
<td>\textit{swrl:propertyPredicate} <Prop></td>
<td>sp: predicate <Prop></td>
</tr>
<tr>
<td>\textit{swrl:argument1} <Arg1></td>
<td>sp:object <Arg2></td>
</tr>
<tr>
<td>\textit{swrl:argument2} <Arg2></td>
<td></td>
</tr>
</tbody>
</table>
Formally, each SWRL rule consists of a body and a head, each of which consists of one or more SWRL atoms.

\[r_{swrl} = \langle head_{swrl}, body_{swrl} \rangle \]

\[head_{swrl} = \{ atom_{swrl}|atom_{swrl}.type \in AtomTypes_{swrl} \} \]

\[body_{swrl} = \{ atom_{swrl}|atom_{swrl}.type \in AtomTypes_{swrl} \} \]

\[AtomTypes_{swrl} = \{ ClassAtom, IndividualPropertyAtom, SameIndividualAtom, DifferentIndividualsAtom, DatavaluedPropertyAtom, BuiltInAtom \} \]

On the other hand, each SPIN rule consists of a CONSTRUCT clause (head) and a WHERE clause (body). The former consists of one or more of triple patterns, where the latter includes also TriplePath, Filter and Bind patterns, as explained in Section 4.

\[r_{spin} = \langle construct_{spin}, where_{spin} \rangle \]

\[construct_{spin} = \{ pattern_{i}|pattern_{i} \in \{TriplePtr\} \} \]

\[where_{spin} = \{ pattern_{i}|pattern_{i} \in \{TriplePtr, TriplePathPtr, FilterPtr, BindPtr\} \} \]

The translation procedure (ignoring temporarily the fact that one SWRL rule can be translated to multiple SPIN rules, due to class embedding), consists of the following translation functions:

\[TrnslRule(r_{swrl}) := (TrnslAtoms(head_{swrl}), TrnslAtoms(body_{swrl})) \]

\[TrnslAtoms(Atoms_{swrl}) := \{ ptr_{i}|ptr_{i} := TrnslAtom(atom_{i,swrl}) and atom_{i,swrl} \in Atoms_{swrl} \} \]

Each SWRL atom is translated into SPIN constructs according to the mappings of Table 1. For example, the \textit{ClassAtom} is translated as follows:

\[TrnslAtom(atom|atom.type = ClassAtom) := (TrnslArg(atom.arg[1]), type, TrnslArg(atom.classPredicate)) \]

where \langle x,y,z \rangle denotes a SPARQL triple pattern and the notation \textit{a.p} denotes the property \textit{p} of the RDF instance \textit{a}.

Another example is the \textit{IndividualPropertyAtom} which is translated as follows:

\[TrnslAtom(atom|atom.type = IndividualPropertyAtom) := (TrnslArg(atom.arg[1]), atom.propertyPredicate, TrnslArg(atom.arg[2])) \]
The rest of the SWRL atoms have similar translation patterns and are omitted for brevity. The only different translation pattern is that of built-in atoms, which are presented in Section 5.3.

Finally, SWRL arguments are translated to their SPARQL equivalents, i.e. variables datatype values, individuals and classes remain unchanged, whereas variables are translated by prefixing them with a question mark.

In the following, we give an example of translating a SWRL rule without built-ins to a SPIN rule. Consider our running example, the SWRL rule at Listing 1 that is translated into the SPIN rule at Listing 7. The actual translation is performed between the RDF representations of the SWRL and SPIN rules, shown in Listing 8 and Listing 9, respectively. However, the above abstract description of the translation is still valid since there is one-to-one mapping between the abstract/textual syntaxes and the RDF representations for both rule languages.

Listing 7. Translation of SRWL rule of Listing 1 into SPIN

```
CONSTRUCT {
  ?x :knows ?z .
}
WHERE {
  ?x rdf:type :Student .
  ?y :isTaughtBy ?z .
}
```

Listing 8. Example of an input SWRL rule in RDF concrete syntax
The SPIN rule in SPIN modelling vocabulary is:

```
spin:rule [ 
    rdf:type sp:Construct ;
    sp:templates ( 
        [ sp:object [ sp:varName "z" ; ] ;
          sp:predicate :knows ;
          sp:subject [ sp:varName "x" ; ] ; ] ) ;
    sp:where ( 
        [ sp:object :Student ;
          sp:predicate rdf:type ;
          sp:subject [ sp:varName "x" ; ] ; ]
        [ sp:object [ sp:varName "y" ; ] ;
          sp:predicate :attends ;
          sp:subject [ sp:varName "x" ; ] ; ]
        [ sp:object [ sp:varName "z" ; ] ;
          sp:predicate :isTaughtBy ;
          sp:subject [ sp:varName "y" ; ] ; ] ) ;
] ;
```

Listing 9. Example of an output SPIN rule in SPIN modelling vocabulary

5.1 Embedding SPIN rules in Classes

One of the unique features of SPIN compared to SWRL is the ability to embed rules into classes and treat them in an OO way as inheritable behaviors (aka methods). By doing so, instances of the embedding class can be identified by variable `?this`. We do this in SWRL2SPIN as follows:

1. We identify variables in the rule body that refer to class instances that play the role of the “subject” in the triple patterns by collecting all the variables in the rule body that are: arguments of a `ClassAtom` construct or first arguments of an `IndividualPropertyAtom` or a `DatavaluedPropertyAtom` construct. The rationale behind this is that subjects of triple patterns can only play the role of the “referenced object”, i.e. the object that exhibits the class behavior. Formally, in step 1 we build the set `ThisVars` as follows:

 \[
 ThisVars(body_{swrl}) := \left\{ \left(\text{atom}.\text{argument1}, \text{atom} \right) \right\} \quad \text{atom} \in body_{swrl}, \text{atom}.\text{type} \in \{ \text{ClassAtom}, \text{IndividualPropertyAtom}, \text{DatavaluedPropertyAtom} \}
 \]

2. We identify the classes these variables refer to by: (a) checking if they are arguments of a `ClassAtom` construct or (b) retrieving the domain of arguments of `IndividualPropertyAtom` or `DatavaluedPropertyAtom` constructs. Formally, we build the set `ThisClasses` as follows:

 \[
 ThisClasses(body_{swrl}) := \left\{ \text{ThisClass}(ThisVar) \mid ThisVar \in ThisVars(body_{swrl}) \right\}
 \]

3. We generate as many rules as the number of the different classes “discovered” in step 2. By doing so, we rewrite each rule of step 3 so that: (a) corresponding variable names are replaced by `?this`, (b) `rdf:type` triple patterns that refer to `?this` are removed from the rule body.
(c) triple patterns in the rule body are re-ordered so that the order of triple patterns is optimal. Actually, the TrnsRule function that has been defined above, should be re-defined as follows:

\[
\text{TrnsRule}(r_{\text{swrl}}) := \\
\{ (\text{ThCl}, \text{repl}(\text{ThCl}, \text{Trnsl}(\text{head}_{\text{swrl}})), \text{emb}(\text{ThCl}, \text{Trnsl}(\text{body}_{\text{swrl}}))) | \text{ThCl} \in \text{ThisClasses}(\text{body}_{\text{swrl}}) \}
\]

The \text{emb} function performs steps 3(a)-3(c) discussed above:

\[
\text{emb}(\text{ThisClass}, \text{Patterns}) := \text{opt}(\text{rem}(\text{repl}(\text{ThisClass}, \text{Patterns})))
\]

Step 3(a) is implemented by the \text{repl} function, which replaces occurrences of variables in the \text{CONSTRUCT} or the \text{WHERE} clause of the SPIN rule, with the variable ?this, when the class that the rule is embedded coincides with the class of the variable:

\[
\text{repl}(\text{ThisClass}, \text{Patterns}) := \\
\{ \langle s', p, o' \rangle | \langle s, p, o \rangle \in \text{Patterns} \land s' = \{ ?\text{this}, \text{ThisClass}(s) = \text{ThisClass} \} \\
\land o' = \{ ?\text{this}, \text{ThisClass}(o) = \text{ThisClass} \}
\}
\]

Step 3(b) is implemented by the \text{rem} function which removes all triple patterns of the form <?this,rdf:type,Class> from the \text{WHERE} clause of the SPIN rule:

\[
\text{rem}(\text{Patterns}) := \text{Patterns} - \{ \{ ?\text{this}, \text{rdf}:\text{type}, o \} | \langle ?\text{this}, \text{rdf}:\text{type}, o \rangle \in \text{Patterns} \}
\]

Finally, function \text{opt} that implements step 3(c) is discussed in Section 5.2.

For our running example of the SWRL rule at Listing 1, the variables that belong to set \text{ThisVars} are:
1. variable ?x, due to the \text{Student(?x)} class atom
2. variable ?y, due to the \text{isTaughtBy(?y,?z)} individual property atom.

These variables belong to classes \text{Student} and \text{Course}, respectively. The former is discovered from the \text{Student(?x)} class atom, while the latter is discovered from the domain of the \text{isTaughtBy(?y,?z)} individual property atom. Thus, the SWRL rule is actually converted into two SPIN rules embedded at classes \text{Student} (Listing 10) and \text{Course} (Listing 11), respectively:

Listing 10. SPIN rule embedded at class \text{Student}

```
CONSTRUCT {    # @Student
  ?this :knows ?z .
}
WHERE {
  ?this :attends ?y .
  ?y :isTaughtBy ?z .
}
```

Listing 11. SPIN rule embedded at class \text{Course}

```
CONSTRUCT {    # @Course
  ?x :knows ?z .
}
WHERE {
  ?x rdf:type :Student .
  ?x :attends ?this .
  ?this :isTaughtBy ?z .
}
```
The rationale for generating multiple SPIN rules from a single SWRL rule is the following. The SWRL rule example we use involves in its condition multiple objects belonging to multiple classes (Student, Course and Professor). A straightforward translation would create just one rule that is stored at the owl:Thing class and inherited by any class of the ontology. This would mean that the rule will be checked by any update in any of the classes, resulting in lower rule execution performance. Since in SPIN we can exploit the embedding of rules inside classes, we can speedup rule execution by allowing only rules that are relevant to each class to be checked. In our example, the SWRL rule could be embedded in any of the involved classes. However, if it is embedded in only one class, e.g. Student, then it would only be considered when new Student instances are created and linked to the instances of the other classes. Using our approach, the same rule is also created for class Course, so that when a new course is created the rule runs as well.

The rule is not created for class Professor, because Professor instances do not appear as subjects in the SWRL condition. If there was a rule for class Professor, it would look like the one in Listing 12, where it is evident that this rule would be very inefficient to check, since any new instance of class Professor should be joined with all instances of class Course and all instances of class Student. Therefore, we have decided not to create OO SPIN rules that would not bring any execution performance advantage.

Concluding, it is more efficient to create multiple SPIN rules embedded in all associated classes so that inserting objects in all associated classes will trigger the rule, rather than keeping a single flat rule, as in SWRL, and checking the rules with multiple joins at all times. Furthermore, we refrain from creating SPIN rules for classes their objects do not stand as subjects in the triple patterns of the SPARQL query, in order to avoid expensive joins, as well.

5.2 Optimizing SPIN rules

In the example of Section 5.1 at Listing 11, the body of the SPIN rule at class Course has two triple patterns that contain variable ?this and one triple pattern for variable ?x ranging over all instances of class Student, following the initial ordering of the atoms at the body of the SWRL rule. However, it is evident that this ordering leads to a very inefficient SPARQL query execution, since variable ?x can be instantiated with many values, whereas variable ?this instantiates each time with only one value. So, SWRL2SPIN re-orders the triple patterns in the body of converted / embedded SPIN rules (according to the step 3(c) in Section 5.1) using the following heuristics:
1. Triple patterns that contain variable ?this at the subject of the triple pattern are placed first;
2. Triple patterns that contain variable ?this at the object of the triple pattern are placed second;
3. Triple patterns that contain the properties owl:sameAs or owl:differentFrom are placed after the triple patterns that instantiate the variables of their subject and object;
4. The order of all other triple patterns remains unchanged, so as not to alter the condition sequence of the original SWRL rule too much.

Formally, the algorithm of function opt (see Section 5.1) is given at Listing 13. This function uses the following auxiliary functions, that implement the above heuristics.

\[
\begin{align*}
\text{opt1}(\text{Patterns}) &= \{(? \text{this}, p, o) | (? \text{this}, p, o) \in \text{Patterns} \} \\
\text{opt2}(\text{Patterns}) &= \{(s, p, ? \text{this}) | (s, p, ? \text{this}) \in \text{Patterns} \} \\
\text{opt3}(\text{Patterns}) &= \{(s, p, o) | (s, p, o) \in \text{Patterns} \land p \in \{\text{sameAs}, \text{differentFrom} \} \} \\
\text{opt4}(\text{Patterns}) &= \text{Patterns} - \text{opt1}(\text{Patterns}) - \text{opt2}(\text{Patterns}) - \text{opt3}(\text{Patterns})
\end{align*}
\]

Function \text{opt5} generates a sequence of patterns in the SPIN rule body, where triples patterns of heuristics 1, 2 and 3 are placed. The \text{\|} operator denotes the concatenation of two sequences.

\[
\text{opt5}(\text{Patterns}) = \text{opt1}(\text{Patterns}) \| \text{opt2}(\text{Patterns}) \| \text{opt4}(\text{Patterns})
\]

Then, the \textbf{foreach} loop in the body of the \text{opt} function iterates over all \text{owl:sameAs} or \text{owl:differentFrom} triples (heuristic 3), and places each triple in the next position in the sequence after the triple that contains the first occurrence of the subject or object of the triple, whichever comes later in the sequence. In Listing 13 we use the following auxiliary functions, whose implementation is trivial: Function \text{first-pos}(<s,p,o>, \text{Patterns}) returns the position of the first occurrence of the triple \(<s,p,o>\) in the sequence of triple \text{Patterns}, function \text{max}(N1,N2) returns the maximum of two numbers, and function \text{insert}(<s,p,o>, Pos, \text{Patterns}) inserts the \(<s,p,o>\) triple in the \text{Patterns} sequence at position \text{Pos}.

```
Function opt(Patterns)
PatternsIn := opt5(Patterns)
Foreach <s,p,o> \in opt3(Patterns)
    Pos1 := first-pos(<s,p',o'>, PatternsIn)
    Pos2 := first-pos(<s'',p'',o>, PatternsIn)
    Pos := max(Pos1, Pos2)
    PatternsIn := insert(<s,p,o>, Pos+1, PatternsIn)

Return PatternsIn
```

Listing 13. The optimization function for the SPIN rule body

According to the above, the triple patterns of the body of the SPIN rule at class Course (Listing 11) are re-ordered as shown in Listing 14.

```
CONSTRUCT {    # @Course
    ?x :knows ?z .
} WHERE {
    ?this :isTaughtBy ?z .
    ?x :attends ?this .
    ?x rdf:type :Student .
}
```

Listing 14. Optimized SPIN rule at class Course
Notice that using the above algorithm, we try to change the order of the original SWRL rule condition elements as little as possible. The SWRL rules have been created by people having a specific understanding of the ontology domain and the order of the rule condition elements represents the understanding of the developer about how class instances logically interrelate. So, if the translated SPIN rules have a random or a completely different order of condition elements then the same developer that will pick up the translated rule base in SPIN will have a hard time comprehending the rules he/she has developed.

5.3 Implementing SWRL built-ins

The translation of the SWRL built-ins does not follow the straightforward approach of the rest of the SWRL atoms and it depends on the nature of each function and the existence of equivalent SPIN or SPARQL functions. More specifically, SWRL specification (Horrocks et al., 2004) has defined 78 built-in functions classified across the categories: Comparisons, Mathematics, Boolean Values, Strings, Date, Time and Duration, URIs, and Lists. Currently, SWRL2SPIN implements more than half of the SWRL built-ins (41), mostly in the categories: Comparisons, Mathematics, Strings, and Lists. For the Date, Time and Duration category, we implemented only the `swrlb:date` function.

Table 2 contains all the supported built-ins, the category they belong to and how their conversion to SPIN/SPARQL was achieved. As it can be observed, the conversion of the built-ins falls into ten categories: binary filter, associative infix assign, binary infix assign, unary assign, assign function, filter function, magic property, complex assign, complex filter, and complex expression. Filter-type conversions lead to SPARQL `FILTER` Boolean expressions, whereas assign-type conversions lead to `BIND` expressions. Simple mathematical comparisons and operations are treated as binary infix mathematical operations, such as `>=` or `-`. Addition and multiplication in SWRL built-ins can have an arbitrary number of arguments, so they are treated as associative binary infix operators. Finally, there are also simple unary operators, e.g. `minus`.

The general atom transformation function (presented at the beginning of Section 5) for the case of built-in atoms is specialized as follows:

\[TrnsfAtom(atom|atom.type = BuiltInAtom) := \]
\[TrnsfFun(convCat(atom.builtin), atom.builtin, atom.arguments) \]

where the `convCat` function returns the conversion category (column 3) of the built-in function (column 1), as indicated in Table 2.

Below we give the definition of the `TrnsfFun` function for two representative cases: `binary filter` and `binary infix assign`.

\[TrnsfFun("binary filter", fun, args) := \]
\["FILTER ("&TrnsfArg(args[1])&TrnsfOp(fun)&TrnsfArg(args[2])&")" \]

where `&` is the string concatenation operator, \(a[n]\) is a notation that returns the \(n\)-th element of a list \(a\) and `TrnsfOp` is a function that returns the operator (column 5) of the built-in function (column 1), as indicated in Table 2. The function `TrnsfArg` has been discussed at the beginning of Section 5.

For the `binary infix assign` conversion category, the translation function is defined similarly:

\[TrnsfFun("binary infix assign", fun, args) := \]
\["BIND (("&TrnsfArg(args[2])&TrnsfOp(fun)&TrnsfArg(args[3])&") AS ","&TrnsfArg(args[1])&")" \]
Table 2. SWRL2SPIN support for SWRL built-ins

<table>
<thead>
<tr>
<th>SWRL</th>
<th>Conversion category</th>
<th>SPIN / SPARQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built-in Function</td>
<td>function op expression</td>
<td></td>
</tr>
<tr>
<td>greaterThan(?x,?y)</td>
<td>Compare binary filter sp:gt > FILTER (?x > ?y)</td>
<td></td>
</tr>
<tr>
<td>greaterThanOrEqual(?x,?y)</td>
<td>Compare binary filter sp:ge >= FILTER (?x >= ?y)</td>
<td></td>
</tr>
<tr>
<td>lessThan(?x,?y)</td>
<td>Compare binary filter sp:lt < FILTER (?x < ?y)</td>
<td></td>
</tr>
<tr>
<td>lessThanOrEqual(?x,?y)</td>
<td>Compare binary filter sp:le <= FILTER (?x <= ?y)</td>
<td></td>
</tr>
<tr>
<td>equal(?x,?y)</td>
<td>Compare binary filter sp:eq = FILTER (?x = ?y)</td>
<td></td>
</tr>
<tr>
<td>notEqual(?x,?y)</td>
<td>Compare binary filter sp:ne != FILTER (?x != ?y)</td>
<td></td>
</tr>
</tbody>
</table>

Math

- add(?y,?x1,?x2,...,?xn) | associative infix assign sp:plus + BIND (((?x1 + ?x2) + ...) + ?xn) AS ?y |
- multiply(?y,?x1,?x2,...,?xn) | associative infix assign sp:mul * BIND (((?x1 * ?x2) * ...) * ?xn) AS ?y |
- subtract(?z,?x,?y) | binary infix assign sp:subtract - BIND (?x - ?y) AS ?z |
- divide(?z,?x,?y) | binary infix assign sp:divide / BIND (?x / ?y) AS ?z |
- unaryPlus(?x,?y) | unary assign sp:unaryPlus + BIND (+(?x) AS ?y |
- unaryMinus(?x,?y) | unary assign sp:unaryMinus - BIND (-(?x) AS ?y |
- abs(?x,?y) | assign function sp:abs BIND (abs(?x) AS ?y |
- ceiling(?x,?y) | assign function sp:ceiling BIND (ceiling(?x) AS ?y |
- floor(?x,?y) | assign function sp:floor BIND (floor(?x) AS ?y |
- round(?x,?y) | assign function sp:round BIND (round(?x) AS ?y |
- mod(?x,?y,?z) | assign function sp:mod BIND (mod(?x, ?y) AS ?z |
- stringConcat(?x1,?x2,...,?xn) | assign function sp:concat BIND (CONCAT(?x1,...,?xn) AS ?y |
- stringLength(?x,?y) | assign function sp:len BIND (STRLEN(?x) AS ?y |
- upperCase(?x,?y) | assign function sp:toUpperCase BIND (UCASE(?x) AS ?y |
- lowerCase(?x,?y) | assign function sp:toLowerCase BIND (LCASE(?x) AS ?y |
- substringBefore(?y,?x1,?x2) | assign function sp:substringBefore BIND (STRINGBEFORE(?y, ?x1, ?x2) AS ?y |
- substringAfter(?y,?x1,?x2) | assign function sp:substringAfter BIND (STRINGAFTER(?y, ?x1, ?x2) AS ?y |
- replace(?y,?x1,?x2) | assign function sp:replace BIND (REPLACE(?y, ?x1, ?x2) AS ?y |
- endsWith(?y,?x) | function assign function sp:endsWith FILTER STRENDS(?x, ?y |
- startsWith(?y,?x) | function assign function sp:startsWith FILTER STRSTARTS(?x, ?y |
- contains(?x,?y) | function assign function sp:contains FILTER CONTAINS(?x, ?y |
- matches(?x,?y) | function assign function sp:matches FILTER REGEX(?x, ?y |
- tokenize(?x,?y) | magic property sp:split ?x sp:split ?y | ?z |
- integerDivide(?pow,?x,?y) | complex assign BIND (spif:cast(?x / ?y, xsd:integer) AS ?z |
- pow(?pow,?x,?n) | complex assign BIND (spif:cast(((?x1 * ?x2) * ...) * ?xn), xsd:integer) AS ?pow |
<table>
<thead>
<tr>
<th>SWRL</th>
<th>Built-in Function</th>
<th>Category</th>
<th>Conversion category</th>
<th>SPIN / SPARQL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>normalizeSpace(?y,?x)</td>
<td>Strings</td>
<td>complex assign</td>
<td>BIND (REPLACE(REPLACE(REPLACE(?x, "\s+", ""), "^\s+", ""), "\s+$", "") AS ?y)</td>
</tr>
<tr>
<td></td>
<td>date(?y,?year,?month,?day)</td>
<td>Date, Time, Duration</td>
<td>complex assign</td>
<td>BIND (spif:cast(CONCAT(spif:cast(?year, xsd:string), "-", spif:cast(?month, xsd:string), "-", spif:cast(?day, xsd:string)), xsd:date) AS ?y)</td>
</tr>
<tr>
<td></td>
<td>containsIgnoreCase(?s1,?s2)</td>
<td>Strings</td>
<td>complex filter</td>
<td>FILTER CONTAINS(LCASE(?s1), LCASE(?s2))</td>
</tr>
<tr>
<td></td>
<td>stringEqualIgnoreCase(?s1,?s2)</td>
<td>Strings</td>
<td>complex filter</td>
<td>FILTER (LCASE(?s1) = LCASE(?s2))</td>
</tr>
<tr>
<td></td>
<td>empty(?list)</td>
<td>Lists</td>
<td>complex filter</td>
<td>FILTER (?list = rdf:nil)</td>
</tr>
<tr>
<td></td>
<td>first(?e,?list)</td>
<td>Lists</td>
<td>complex expr</td>
<td>?list rdf:first ?e .</td>
</tr>
<tr>
<td></td>
<td>rest(?e,?list)</td>
<td>Lists</td>
<td>complex expr</td>
<td>?list rdf:rest ?e .</td>
</tr>
<tr>
<td></td>
<td>member(?e,?list)</td>
<td>Lists</td>
<td>complex expr</td>
<td>?list (rdf:rest)*/rdf:first ?e .</td>
</tr>
</tbody>
</table>
| | length(?length,?list) | Lists | complex expr | \{
 SELECT ?x ?list (COUNT(?e) AS ?length)
 WHERE {
 ?list (rdf:rest)*/rdf:first ?e .
 }
 GROUP BY ?x ?list
} . # ?x is an instance with a property whose value is the list ?list
The translation functions for the rest of the conversion categories will not be presented for brevity. We believe that the reader can easily follow the conversion patterns between the first and the last columns of Table 2.

Another large category is SWRL built-in functions with an exact equivalent SPIN / SPARQL function, as e.g. round, replace, and contains. The conversion of these functions is straightforward; as in the FILTER case, all arguments of the SWRL built-in become arguments of the SPIN / SPARQL function, whereas in the BIND case the first argument of the SWRL built-in becomes the variable to be bound in the SPIN / SPARQL BIND expression, whereas the rest of the arguments of the SWRL built-in become the arguments of the SPIN / SPARQL function.

As discussed in Section 4, FILTER and BIND expressions both have an sp:expression property that contains the mathematical or functional SPARQL expression; BIND also has an sp:variable for the assigned variable. All expressions belong to a type, which is the name of the main SPARQL function in the expression, e.g. sp:gt, sp:lcase, etc. In the case of the complex functional expressions, the outer function is the type of the FILTER expression, e.g. sp:contains in the case of the containsIgnoreCase SWRL built-in. The argument list of the SWRL built-in (property swrl:arguments) is treated as explained above, generating sp:argNN properties of the SPARQL expression / function. The only exception is the spif:cast function, whose second argument is represented by an arg:datatype property. The values of the sp:argNN properties can be SPIN variables, datatype constants, individuals or nested SPARQL functions / expressions.

As an example, consider the SWRL rule in Listing 15 which is translated in the SPIN rule at class Person (Listing 16). Specifically, the RDF concrete syntax for the SWRL built-in atom is shown in Listing 17, whereas the converted SPIN / SPARQL expression is shown in Listing 18.

\[
\text{Person}(?x) \land \text{firstName}(?x, ?y) \land \text{lastName}(?x, ?z) \land \\
\text{swrlb:stringConcat}(?a, ?y, " \\
\text{ ?z}) \rightarrow \text{fullName}(?x, ?a)
\]

Listing 15. Sample SWRL rule with built-in

\[
\text{CONSTRUCT} \{ \# \text{ @Person} \\
\text{ ?this} :\text{fullName} ?a . \\
\} \\
\text{WHERE} \{ \\
\text{ ?this} :\text{firstName} ?y . \\
\text{ ?this} :\text{lastName} ?z . \\
\text{BIND (CONCAT(?y, " \\
\text{ ?z}) AS ?a) . \\
\}
\]

Listing 16. Sample SWRL built-in translated to SPIN/SPARQL

[rdf:type swrl:BuiltInAtom ;
swrl:builtin swrlb:stringConcat ;
swrl:arguments [rdf:type rdf:List ;
\ rdfs:first :a ;
\ rdfs:rest [rdf:type rdf:List ;
\ rdfs:first :y ;
\ rdfs:rest [rdf:type rdf:List ;
\ rdfs:first "^^xsd:string ;
}
The rest of the SWRL built-ins are treated as **Complex** cases, meaning that their translation involves the combination of more than one simple functions, as discussed above. Complex cases can be filters, assignments or general SPARQL expressions (**graph patterns**) and they are treated in an ad-hoc manner. For example, the `integerDivide` built-in is translated as a `division` and a `cast` to integer, whereas the `pow` built-in is translated as repetitive `multiplication` using recursion. **List** built-ins are of special interest because their translation cannot be performed using SPIN/SPARQL functions, but can be treated using SPARQL path expressions. For example, the `member` built-in is translated into a recursive path expression combining `rdf:first` and `rdf:rest`. The translation of the `length` built-in is the most complicated one because it requires a SPARQL subquery that counts all the elements in the list, i.e. all possible iterations of the `rdf:rest` property in the `rdf:rest`* recursive path.

A special case is **magic properties** which are supported by many SPARQL engines to dynamically compute values at query time. A magic property usually is implemented by a calculation function that determines bindings of the variables on the left or right side of the predicate. SPIN enables users to define such magic properties, in a very similar way as SPIN Functions, but providing greater flexibility. In contrast to BIND/FILTER functions, magic properties can return multiple values. Furthermore, any input or output variable may be unbound; it is the task of the magic property to find their potential bindings. The magic property `spif:split` is used in SWRL2SPIN to translate the `swrlb:tokenize` SWRL built-in. The first variable of the SWRL built-in generates multiple bindings. When the `spif:split` magic property is used, the subject of the “triple pattern” generates multiple alternative bindings. Magic properties are treated in an ad-hoc manner in SWRL2SPIN, since their definition and behavior does not follow a regular pattern.

The rest of the SWRL built-ins will be implemented as a future work, most probably as complex conversion cases or as user-defined magic properties. We notice here that the only other SWRL related tool supporting functions for RDF lists is the SWRL-IQ plugin (Elenius, 2012) for Protégé 3.x.
6. Evaluation

To evaluate SWRL2SPIN we have initially generated use cases of a University ontology with various SWRL rules in Protégé (“Protégé”, n.d.), using the SWRLTab editor (O’Connor et al., 2005), including all the SWRL-built-ins of Table 2, except for built-ins not supported by Protégé SWRLTab. Then we have used the SWRLDroolsTab (“SWRL Drools Tab”, 2012) to run SWRL rules and to identify and record all the rule inferences. Consequently, we have converted the SWRL use cases through SWRL2SPIN and we have tested the generated SPIN rules using TopSPIN in TopBraib Composer FE (TopQuadrant, n.d.) for equivalent inferences. The results were found identical for all use cases, except the ones that could not be run in SWRL-Drools.

Furthermore, we present below some performance tests we have conducted in order to evaluate the efficiency of the translation procedure and the efficiency of the generated rules. All tests were performed on a Windows 10 PC with Intel i7-4770 @ 3.40GHz, 8 GB RAM and SSD.

First, we have performed a scalability test for the translation time of SWRL2SPIN tool. Results shown in Figure 2 indicate that the translation time is linear to the number of rules, which was expected since each rule is translated individually, even if there are common variables or other constructs among SWRL rules. Rule 1 is the rule shown at Listing 1, with 3 atoms in the rule body, while Rule 2 (shown at Listing 19) has 6 atoms in the body, including one built-in atom. The translation time per rule also depends on the number of atoms and the number and type of built-ins. The average translation time per rule is about 0,72 msec for Rule 1 and 2,82 msec for Rule 2.

![Figure 2. Rule translation time scalability.](image)

Listing 19. Sample SWRL rule in human readable syntax

Student(?x) ∧ attends(?x,?y) ∧ isTaughtBy(?y,?z) ∧ firstName(?z,?f) ∧ lastName(?z,?l) ∧ swrlb:stringConcat(?fn,?f, " ", ?l) → knowsName(?x, ?fn)
The second test evaluates the performance of executing at TopBraid the SPIN rules embedded in a class against flat rules, as in SWRL. Specifically, we have tested the flat rule at Listing 7 against the rule at Listing 10 which is embedded at class Student. Results are shown in Table 3 and Figure 3. It is evident that rules embedded in a class perform faster than their flat equivalents. The speed improvement is 14% for an ontology with 100K Student instances that all attend the same course with one teacher and 32% for 1M instances and it is statistically significant with a p-value less than 0.01.

Table 3. Execution time (in msec) of a flat SPIN rule vs. a rule embedded in a class.

<table>
<thead>
<tr>
<th></th>
<th>100K instances</th>
<th>1M instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat rule</td>
<td>1674</td>
<td>38098</td>
</tr>
<tr>
<td>Embedded rule</td>
<td>1438</td>
<td>25846</td>
</tr>
<tr>
<td>Improvement</td>
<td>14%</td>
<td>32%</td>
</tr>
</tbody>
</table>

Figure 3. Performance comparison of a flat SPIN rule vs. a rule embedded in a class.

The third test tries to prove the point made at Section 5.1 that SPIN rules are embedded only at classes that their instances play the role of subjects at rule condition triple patterns and not at classes whose instances appear only as “referenced objects”, i.e. they appear at triple patterns only as objects, due to performance issues. Specifically, we have tested the rule at Listing 10 which is embedded at class Student (we call this “subject” class) against the rule at Listing 12 which would have been embedded at class Professor (we call this “object” class), if we have decided to embed a rule into all references classes. Results are shown in Table 4 and Figure 4. It is evident that rules embedded in a “subject” class perform faster than rules embedded in an “object” class. The speed difference is 14% for an ontology with 100K Student instances and 35% for 1M instances and it is statistically significant with a p-value less than 0.01.
Table 4. Execution time (in msec) of a SPIN rule embedded in a “subject” class vs. a rule embedded in an “object” class.

<table>
<thead>
<tr>
<th></th>
<th>100K instances</th>
<th>1M instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule embedded in “object” class</td>
<td>1677</td>
<td>39714</td>
</tr>
<tr>
<td>Rule embedded in “subject” class</td>
<td>1438</td>
<td>25846</td>
</tr>
<tr>
<td>Improvement</td>
<td>14%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Figure 4. Performance comparison of a SPIN rule embedded in an “object” class vs. a rule embedded in a “subject” class.

Finally, the fourth test evaluates the performance of the optimized SPIN rules (section 5.2) of SWRL2SPIN against their non-optimized version. Specifically, we have tested the non-optimized rule at Listing 11 against the optimized rule at Listing 14 rule, both embedded at class Course. Results are shown in Table 5 and Figure 5. It is evident that optimized rules perform faster than their non-optimized equivalents. The speed improvement is 11% for an ontology with 100K instances and 30% for 1M instances and it is statistically significant with a p-value less than 0.03.

Table 5. Execution time (in msec) of an optimized SPIN rule vs. an non-optimized rule.

<table>
<thead>
<tr>
<th></th>
<th>100K instances</th>
<th>1M instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-optimized rule</td>
<td>1413</td>
<td>29508</td>
</tr>
<tr>
<td>Optimized rule</td>
<td>1257</td>
<td>20683</td>
</tr>
<tr>
<td>Improvement</td>
<td>11%</td>
<td>30%</td>
</tr>
</tbody>
</table>
7. Conclusions

In this paper we have argued that SPIN is a more promising de-facto industrial standard for the future of combining ontologies and rules, because it builds upon the widespread use of SPARQL. Furthermore, SWRL has been around for quite a while, not being able to achieve a W3C recommendation status. SPIN also offers more expressivity than SWRL due to constructs like NOT EXISTS, FILTER, OPTIONAL and UNION, and also offers object-orientation by being able to store rules to classes as behaviors to be inherited through the class hierarchy. Thus, we believe that existing large SWRL projects can benefit from being translated into SPIN rules.

To this end we have developed in Prolog and presented in this paper the SWRL2SPIN prototype tool (available at: https://github.com/nbassili/SWRL2SPIN) that translates ontologies with SWRL rules into ontologies with SPIN rules. The main contribution of the paper is that the transformation translates flat SWRL rules to object-oriented SPIN rules, embedded in the appropriate ontology classes and optimized for maximum rule execution performance. The novelty of SWRL2SPIN lies on the fact that, to the best of our knowledge, there is no other tool in the literature that does that.

We have tested the tool using ontologies and SWRL rule bases edited (and tested for reasoning) by Protégé and we have successfully imported the translated ontologies and SPIN rules into the TopBraid Composer, having exactly the same inference results. We have also evaluated the scalability of the conversion tool, which is linear, and the effectiveness of the generated SPIN rules in terms of performance. Results have clearly confirmed all our claims: a) rules embedded in classes perform better than flat rules, b) rules embedded in classes that their instances play the role of “subjects” in the triple patterns of the condition perform better than rules that their instances play the role of “objects”, and c) optimized embedded rules perform better than non-optimized ones. The performance improvement also depends on the size of the ontology, so for large numbers of instances our choices regarding the embedded rules perform even better.

SWRL2SPIN currently supports 41 SWRL built-ins, including built-ins for lists which are usually not supported, but we have provided a structured methodology for supporting more in the future. Notice that our translation methodology is based on direct RDF-to-RDF translation.

Figure 5. Performance comparison of a non-optimized SPIN rule vs. an optimized rule.
between the SWRL and SPIN RDF vocabularies; therefore, it is not dependent on the implementation language we have choose for SWRL2SPIN.

As for future work, we plan to make our tool available for public testing, to evaluate it for converting large SWRL rule bases, to support more SWRL built-ins and to be able to automate the translation process, which currently must be run from within the Prolog environment, possibly as an add-on to some SPIN rule engine. Finally, with the emergence of the SHACL language (Shapes Constraint Language) (Knublauch & Kontokostas, 2017), our future aim is to extend the tool in order to convert SWRL rules also to SHACL rules (Knublauch et al., 2017), when the latter becomes part of the SHACL recommendation. We believe that RDF validation using rule-based approaches will become really important in the future (Arndt et al., 2017) as more Linked Open Datasets become available.

References

26

